Импульсная голография - запись голограмм интенсивными лазерными импульсами, имеет преимущество по сравнению с записью излучением лазеров ,работающих в непрерывном режиме. Вследствие кратковременности процесса записи (десятки нс) исключается влияние нестабильности элементов установки на качество голограммы и отпадает необходимость в использовании громоздких систем стабилизации. Кроме того, возможна запись голограмм движущихся объектов и быстро протекающих процессов. Это важно при изучении редко повторяющихся явлений и исследованиях в производств, условиях, т. к. информация об объекте записывается за время импульса, а затем может изучаться неограниченно долго. Для восстановления объектной волны используется обычно гелий-неоновый лазер непрерывного действия (см. Газоразрядные лазеры). Хотя замена лазера непрерывного действия импульсным не вызывает принципиальных изменений в схеме записи (см. Голография ),но в И. г. возникают особенности, обусловленные меньшей длиной когерентности импульсного лазера, большим разнообразием объектов и высокой мощностью излучения. В И. г. применяются твердотельные лазеры (рубиновые и неодимовые) с преобразованием частоты излучения методами генерации гармоник и вынужденного комбинационного рассеяния, перекрывающие видимый и ближние ИК- и УФ-диапазоны спектра (см. Нелинейная оптика, Параметрический генератор света). Применяются также лазеры на красителях и СО2-лазеры. Длительность импульсов от 10-3 до 10-10 с, энергия 0,01 - 10 Дж. Благодаря высокой интенсивности излучения импульсных лазеров запись голограмм производится на спец. материалах, т. к. многие материалы, предназначенные для непрерывной записи голограмм, мало чувствительны к коротким импульсам излучения. В И. г. используются тонкие магн. плёнки, к-рые могут быть локально нагреты лазерным излучением до точки Кюри (MnBi, EuO и др.), что приводит к изменению магн. и магнитооптич. свойств [1]; полупроводниковые кристаллы, поглощающие жидкости и газы, комбинационно-активные среды (см. Комбинационное рассеяние света ),среды с инверсией заселённостей и фазовой памятью [4]. Высокая пиковая мощность требует спец. мер для защиты оптич. элементов (линз, зеркал, фильтров и др.) от разрушения. Если объектом голографич. изображения является человек, то предельно допустимая плотность энергии импульса, ещё безопасная для сетчатки глаза, ~10-3 Дж/см2 (для кожи ~0,07 Дж/см2). И. г. применяется для съёмки портретов и объектов живой природы, при неразрушающем контроле изделий (см. Голографическая интерферометрия ),при изучении потоков частиц, исследовании быстро протекающих процессов в плазме и пламенах, при визуализации картин обтекания летат. аппаратов в аэродинамич. трубах, для контроля параметров волновых полей излучения, генерируемого лазерами, и т. д. [1-3].
Д. И. Стаселько
Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.
Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.
Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.
Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.