к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Активная лазерная спектроскопия

Активная лазерная спектроскопия - один из методов нелинейной спектроскопии, исследующий поглощение или рассеяние пучка света в среде, в к-рой предварительно (с помощью дополнит. лазерного излучения определ. частот) селективно возбуждены и (или) сфазированы изучаемые оптич. моды .Такое активное лазерное "приготовление" среды (накачка) меняет картину взаимодействия зондирующего (пробного) излучения со средой.

Активная лазерная спектроскопия основана на эффекте нелинейного взаимодействия интенсивного лазерного излучения и оптич. среды. Мощное излучение накачки нарушает термо-динамич. равновесие в среде, наводит корреляции между образующими её частицами, возбуждает определ. внутр. движения в них и т. п., а более слабое зондирующее излучение выявляет наведённые возмущения и кинетику их затухания.

Методы активной лазерной спектроскопии отличаются типом исследуемого резонанса, характером оптич. отклика среды, а также способом зондирования и измеряемым параметром (интенсивность, фаза, поляризация). А. л. с. поглощения исследует оптич. резонанс среды, проявляющийся в одно- или многофотонном поглощении света; А. л. с. рассеяния - резонанс, проявляющийся в рассеянии света (комбинационном, рэлеевском, Мандельштама - Бриллюэна, гиперкомбинационном, гиперрэле-евском и т. п.). Оптич. отклик среды на воздействие волн накачки и зондирующего излучения может быть когерентным (связанным с наведённой нелинейной оптич. поляризацией среды) или некогерентным (связанным с оптически-индуцированным возмущением населённостей уровней энергии), соответственно различают когерентную и некогерентную А. л. с.

Активная лазерная спектроскопия наз. стационарной или нестационарной в зависимости от того, исследуется установившийся (стационарный) или неустановившийся (переходный, нестационарный) оптич. отклик среды. В последнем случае для возбуждения и зондирования среды используются короткие лазерные импульсы, длительность к-рых меньше характерных времён установления и релаксации исследуемых возбуждённых состояний среды.

С помощью зондирующего излучения можно изучать модуляцию оптич. характеристик среды (модуляц. вариант А. л. с.), вызываемую излучением накачки; кроме того, благодаря возмущению среды накачкой могут появляться новые спектральные или пространств. компоненты зондирующего излучения, на их исследовании основан генерац. вариант А. л. с. Разл. способы возбуждения и зондирования, применяемые в А. л. с., приведены на рис. на примере двухуровневой системы.

111992-387.jpg

Схема возбуждения (вверху) и зондирования (внизу) в активной лазерной спектроскопии на примере двухуровневой системы: а - однофотонное возбуждение (возбуждение за счет однофотонного поглощения) и однофотонное зондирование с помощью регистрации изменений в поглощении или усилении (пунктир); б - возбуждение с помощью двухфотонного поглощения и комбинационного рассеяния света (КРС); зондирование осуществляется за счёт антистоксова или стоксова (пунктир) КРС, а также двухфотонного поглощения или усиления (пунктир).

В случае стационарной когерентной А. л. с. изотропных сред и центросимметричных кристаллов нелинейная оптич. поляризация Р среды может быть описана кубичным по амплитудам световых полей членом разложения:

111992-388.jpg

111992-389.jpg (1)

Здесь111992-390.jpg - компоненты тензора нелинейной оптич. восприимчивости (см. Поляризуемость)3-го порядка (111992-391.jpg- индексы декартовых координат); частота исследуемого сигнала 111992-392.jpg является алге-браич. суммой частот, вводимых в среду полей111992-393.jpg111992-394.jpg (т. е. 111992-395.jpg ), нек-рые из к-рых могут оказаться отрицательными. D - численный коэф., учитывающий возможное вырождение среди частот 111992-396.jpg .

Одно или неск. полей 111992-397.jpg (111992-398.jpg=1, 2, 3), вводимых в среду, могут быть сильными (накачка), остальные - слабыми. При приближении одной из частот 111992-399.jpg либо одной из их линейных комбинаций (111992-400.jpg и т. п.) к частоте разрешённого квантового перехода в исследуемой среде компоненты нелинейной восприимчивости 111992-401.jpg испытывают дисперсию. Соответственно, испытывают дисперсию и параметры эл--магн. волны, источником для к-рой служит нелинейная поляризация (1). Стационарная когерентная А. л. с. с использованием лазерного излучения относительно невысокой интенсивности (для к-рого в разложении поляризации существен только первый нелинейный член) тождественна че-тырёхфотонной нелинейной спектроскопии.

Для примера рассмотрим стационарную когерентную спектроскопию двухфотонного поглощения (ДФП) света. В генерац. варианте эта схема формально описывается восприимчивостью 111992-402.jpg , где все частоты 111992-403.jpg (частоты волн накачки) подбираются так, что суммарная частота сканирует область вблизи частоты 111992-404.jpg перехода, разрешённого в ДФП, т. е. 111992-405.jpg;111992-406.jpg - частота пробной волны.

Как правило, для реализации генерац. схем когерентной А. л. с. необходимо выполнение условий фазового синхронизма (в данном случае111992-407.jpg111992-408.jpg, где 111992-409.jpg - волновые векторы плоских волн с частотами 111992-410.jpg соответственно). Модуляц. вариант когерентной спектроскопии ДФП описывается восприимчивостью 111992-411.jpg, 111992-412.jpg при 111992-413.jpg (111992-414.jpg - частота волны накачки, 111992-415.jpg - зондирующей волны). При накачке диэлектрич. проницаемость среды на частоте зондирующей волны 111992-416.jpg равна 111992-417.jpg111992-418.jpg (2)

(111992-419.jpg- диэлектрич. проницаемость среды в отсутствие накачки). При 111992-420.jpg восприимчивость111992-421.jpg имеет мнимую часть; поэтому при 111992-422.jpg появляется добавка к мнимой части у диэлектрич. проницаемости 111992-423.jpg, а следовательно, и дополнит. поглощение на частоте 111992-424.jpg, индуцированное полем накачки на частоте 111992-425.jpg; это поглощение добавляется к обычному линейному поглощению на частоте 111992-426.jpg. Вещественная составляющая 111992-427.jpg даёт добавку к показателю преломления среды на частоте зондирующего излучения.

Для реализации модуляц. схем когерентной А. л. с. не требуется применять спец. мер для выполнения условий синхронизма: здесь они выполняются автоматически. Для описанной выше схемы когерентной спектроскопии ДФП111992-428.jpg

Одним из методов А. л. с. является когерентная спектроскопия комбинационного рассеяния света. С помощью А. л. с. удаётся решать задачи, недоступные др. методам спектроскопии поглощения или рассеяния света, значительно увеличить информативность оптич. спектроскопии, повысить отношение сигнал/шум на выходе традиц. спектрометров, улучшить их спектральное, пространственное и временное разрешение.

Литература по активной лазерной спектроскопии

  1. Нелинейная спектроскопия, под ред. Н. Бломбергена, пер. с англ., М., 1979;
  2. Ахманов С. А., Коротеев Н. И., Методы нелинейной оптики в спектроскопии рассеяния света, М., 1981;
  3. Сверхкороткие световые импульсы, под ред. С. Шапиро, пер. с англ., М., 1981;
  4. Laubereau A., Kaiser W., Vibrational dynamics of liquids and solids investigated by picosecond light pulses, "Revs Mod. Phys.", 1978, v. 50, № 3, p. 607.
к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution