© Copyright - Karim A. Khaidarov, December 30, 2008
ПРОИСХОЖДЕНИЕ И ДИНАМИКА УДАРНОГО МЕТАМОРФИЗМА
Светлой памяти моей дочери Анастасии посвящаю
Реальные источники массы небесных тел
"Камни с неба падать не могут, так как не только физически,
но и вообще ничем разумным объяснить это нельзя"
Президент Французской Академии Наук
математик Пьер Симон Лаплас
В современной астрофизике полно заявлений, умственных построений и даже теорий, предусматривающих эрупцию вещества с небесных тел (звезд) и уменьшение их массы. Эти построения не учитывают одного: для отрыва массы от звезды необходимо достижение этой массой второй космической скорости, которая для звезд составляет сотни и тысячи километров в секунду. Кроме ядерных взрывов в природе нет таких сил, которые бы смогли обеспечить такую эрупцию.
В отличие от этих ложных построений аккреционная концепция Канта [1] опирается на естественный и безальтернативный путь: небесные тела образуются падением их друг на друга, то есть эволюция небесных тел существенным образом идет от малых тел ко всё большим. Только такие катастрофические события, как взрывы сверхновых и галактические джеты взрывающихся хост-квазаров старых галактик (галактических ядер) нарушают этот ход и замыкают его в вечный круговорот вещества во Вселенной.
Звезды в редчайшем случае возникают отдельно. Пространственный масштаб облаков первичного межгалактического H-He4-газа - продукта разрушения старых галактик, слишком велик, поэтому звезды обычно образуются большими группами: шаровыми скоплениями и галактиками.
В природе существует две эволюционные ветви звезд, наблюдательно различенные Вальтером Бааде еще в 1940-х годах [3].
Это звезды "населения II
" по Бааде, или по-другому, звезды галактического гало, и звезды "населения I" - звезды галактического диска."Население II" - это звезды первого поколения. Они образуются из притекающей в Галактику водородно-гелиевой смеси и, как правило, являются низкометаллическими красными гигантами, сравнительно эфемерными и полупрозрачными шарами газа, светящегося в основном от потери кинетической энергии. Кинетическая энергия этого газа есть энергия, приобретенная газом от его падения в гравитационную яму звезды, то есть в процессе аккреции. Эти звезды имеют хаотические орбиты, занимающие всё гало. В эллиптических галактиках - это основное звездное население. Плотность их атмосфер порядка миллиграммов на кубометр, то есть в тысячу раз меньше средней плотности звезд "населения I".
Звезды второй ветви - "население I
", медленно образуются путем аккреции межзвездной газопылевой смеси - продуктов взрыва сверхновых, концентрирующихся к плоскости галактического диска. Орбиты этих звезд являются почти круговыми вокруг центра Галактики и лежат в плоскости диска. Это определяется тем, что их эволюция проходила триллионы лет, а значит, они потеряли за это время компоненту скорости движения относительно межзвездного вещества диска, испытывая хотя и малое, но длительное торможение. Звезды этого населения отличаются высокой металличностью, так как такова металличность аккрецируемого ими материала.Этот материал есть межзвездные пыль и газ, - продукты взрывов сверхновых, плюс водородно-гелиевая смесь, попавшая в галактику извне.
Плотность этого материала различается на порядки в разных местах диска. Связано это вот с чем.
В обычных условиях в открытом космосе невозможна близкая к стационарной высокая плотность газа. Связано это с тем, что при возникновении частых столкновений молекул начинают работать газовые законы, расширяющие данный объем газа в открытый космос и тем самым рассеивающие его.
Однако в динамике дисков спиральных галактик происходит нечто иное.
Как установлено доплеровскими наблюдениями, типичная скорость вещества дисков галактик составляет 130 - 270 км/с (см рис.1). При попадании даже малого островка газа (флюктуации) извне, имеющего скорость, близкую к нулевой или просто отличающуюся от скорости диска на 130 - 270 км/с, образуется коническая ударная волна. Во фронте этой волны возникают давление и плотность газа, на несколько порядков превышающие эти величины для космического пространства в диске. Так как склон ударной волны, обращенный к центру галактики, является препятствием для орбитально набегающих масс межзвездного вещества, то условия фронта ударной волны соблюдаются далее, и этот склон растет спиралью до самого балджа галактики, пока соблюдаются условия для возникновения ударной волны.
Рис. 1. Наблюдаемая скорость звезд галактических дисков [4].
Этот склон есть не что иное, как фронт одного из галактических рукавов. Как установлено автором в [5], в нашей галактике соблюдаются условия для трех таких "стоячих" ударных волн
- рукавов: Perseus, Scutum, Sagittarius. Солнце и другие звезды диска каждые 73+3 миллиона лет пересекают галактические рукава, претерпевая аккрецию катастрофического характера. Вещество в них имеет плотность на несколько порядков выше плотности вещества в межрукавном пространстве. На планеты обрушивается шквал комет, а звезды обзаводятся большой газовой короной и увеличивают светимость.Поэтому именно в рукавах галактики происходят основные процессы аккреции вещества, то есть процессы образования новых небесных тел и наращивания массы уже имеющихся, проходящих эти рукава на большой орбитальной скорости.
При этом, внутри рукава образуются сначала микрокометы - своеобразный космический снег. Роль агрегирующих сил на начальном этапе играют силы Ван-дер-Ваальса, силы поверхностного натяжения, осмоса, электрические силы, а не силы гравитации.
Эти микрокометы имеют нулевую скорость относительно вещества рукава (5-7 км/с орбитальной скорости), поэтому постоянно находятся внутри рукава и быстро, по астрономическим меркам слипаются, образуя космические снеговики - кометные тела.
Часть кометных тел убывает из периферии рукава в межрукавное пространство, где постепенно приобретает скорость, характерную для межрукавного вещества: звезд - пыли и газа, то есть около 200 км/с.