Линейная интерполяция

Самый простой вид интерполяции — линейная, которая представляет искомую зависимость А(Х) в виде ломаной линии. Интерполирующая функция А(Х) состоит из отрезков прямых, соединяющих точки (рис. 15.2).

Рис. 15.2. Линейная интерполяция (листинг 15.1)

Для построения линейной интерполяции служит встроенная функция linterp (листинг 15.1).

  • linterp(x, y, t) — функция, аппроксимирующая данные векторов х и у кусочно-линейной зависимостью;
    • х — вектор действительных данных аргумента;
    • у — вектор действительных данных значений того же размера;
    • t — значение аргумента, при котором вычисляется интерполирующая функция.

Элементы вектора х должны быть определены в порядке возрастания, т. е. Х1<Х2<Х3< . . . <Xn.

Листинг 15.1. Линейная интерполяция

Как видно из листинга, чтобы осуществить линейную интерполяцию, надо выполнить следующие действия:

  • Введите векторы данных х и у (первые две строки листинга).
  • Определите функцию linterp(х,у, t).
  • Вычислите значения этой функции в требуемых точках, например lin-terp(x,y, 2.4)=3.52 или iinterp(x,y,6) =5.9, или постройте ее график, как показано на рис. 15.2.

Обратите внимание, что функция A(t) на графике имеет аргумент t, а не х. Это означает, что функция А (с) вычисляется не только при значениях аргумента (т. е. в семи точках), а при гораздо большем числе аргументов в интервале (0,6), что автоматически обеспечивает Mathcad. Просто в данном случае эти различия незаметны, т. к. при обычном построении графика функции А(х) от векторного аргумента х (рис. 15.3) Mathcad, по умолчанию, соединяет точки графика прямыми линиями (т. е. скрытым образом осуществляет их линейную интерполяцию).

Рис. 15.3. Обычное построение графика функции от векторной переменной х (листинг 15.1)

  

Знаете ли Вы, что релятивистское объяснение феномену CMB (космическому микроволновому излучению) придумал человек выдающейся фантазии Иосиф Шкловский (помните книжку миллионного тиража "Вселенная, жизнь, разум"?). Он выдвинул совершенно абсурдную идею, заключавшуюся в том, что это есть "реликтовое" излучение, оставшееся после "Большого Взрыва", то есть от момента "рождения" Вселенной. Хотя из простой логики следует, что Вселенная есть всё, а значит, у нее нет ни начала, ни конца... Подробнее читайте в FAQ по эфирной физике.

{DATA}
НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 21.08.2019 - 14:24: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
19.08.2019 - 13:08: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
19.08.2019 - 13:00: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
19.08.2019 - 12:52: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
17.08.2019 - 18:50: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Тиртхи - Карим_Хайдаров.
15.08.2019 - 23:53: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
15.08.2019 - 23:52: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
15.08.2019 - 23:50: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА - Карим_Хайдаров.
15.08.2019 - 17:13: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМЫ ВНЕДРЕНИЯ НОВЫХ ТЕХНОЛОГИЙ - Карим_Хайдаров.
15.08.2019 - 16:22: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
15.08.2019 - 14:50: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Вихревые эффекты и вихревые теплогенераторы - Карим_Хайдаров.
09.08.2019 - 13:03: АСТРОФИЗИКА - Astrophysics -> Исследования комет - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution