ИнтерполяцияКогда Вы имеете дело с выборкой экспериментальных данных, то они, чаще всего, представляются в виде массива, состоящего из пар чисел (xi, yi). Поэтому возникает задача аппроксимации дискретной зависимости y(xj непрерывной функцией f(x). Функция f(x), в зависимости от специфики задачи, может отвечать различным требованиям:
Различные виды построения аппроксимирующей зависимости f (х) иллюстрирует рис. 15.1. На нем исходные данные обозначены кружками, интерполяция отрезками прямых линий — пунктиром, линейная регрессия — наклонной прямой линией, а фильтрация — жирной гладкой кривой. Эти зависимости приведены в качестве примера и отражают лишь малую часть возможностей Mathcad по обработке данных. Вообще говоря, в Mathcad имеется целый арсенал встроенных функций, позволяющий осуществлять самую различную регрессию, интерполяцию-экстраполяцию и сглаживание данных. Рис. 15.1. Разные задачи аппроксимации данных Как в целях подавления шума, так и для решения других проблем обработки данных, широко применяются различные интегральные преобразования. Они ставят в соответствие всей совокупности данных у(х) некоторую функцию другой координаты (или координат) F(CO). Примерами интегральных преобразований являются преобразование Фурье (см. разд. 15.4.1) и вейвлетное преобразование (см. разд. 15.4.2). Напомним, что некоторые преобразования, например Фурье и Лапласа, можно осуществить в режиме символьных вычислений (см. гл. 5). Каждое из интегральных преобразований эффективно для решения своего круга задач анализа данных. Для построения интерполяции-экстраполяции в Mathcad имеются несколько встроенных функций, позволяющих "соединить" точки выборки данных (xi, yi) кривой разной степени гладкости. По определению интерполяция означает построение функции д(х), аппроксимирующей зависимость у(х) в промежуточных точках (между xi). Поэтому интерполяцию еще по-другому называют аппроксимацией. В точках xi значения интерполяционной функции должны совпадать с исходными данными, т. е. A(xi) =у(xi). Везде в этом разделе при рассказе о различных типах интерполяции будем использовать вместо обозначения А(Х) другое имя ее аргумента A(t), чтобы не путать вектор данных х и скалярную переменную t. |