ОДУ высшего порядкаОбыкновенное дифференциальное уравнение с неизвестной функцией y(t), в которое входят производные этой функции вплоть до y(N) (t), называется ОДУ N-ГО порядка. Если имеется такое уравнение, то для корректной постановки задачи Коши требуется задать N начальных условий на саму функцию y(t) и ее производные от первого до (N-1) го порядка включительно. В Mathcad 11 можно решать ОДУ высших порядков как с помощью вычислительного блока Given/odesolve, так и путем сведения их к системам уравнений первого порядка. Внутри вычислительного блока:
В остальном, решение ОДУ высших порядков ничем не отличается от решения уравнений первого порядка (см. разд. 11.1), что иллюстрируется листингом 11.3. Как Вы помните, допустимо написание производной как в виде знака дифференциала (так в листинге 11.3 введено само уравнение), так и с помощью штриха (так введено начальное условие для первой производной). Не забывайте пользоваться булевыми операторами при вводе уравнений и начальных условий. Полученное решение y(t) показано на рис. 11.2. Листинг 11.3. Решение задачи Коши для ОДУ второго порядка Рис. 11.2. Решение уравнения осциллятора (листинг 11.3) В листинге 11.3 решено уравнение затухающего гармонического осциллятора, которое описывает, например, колебания маятника. Для модели маятника y(t) описывает изменения угла его отклонения от вертикали, y'(t) — угловую скорость маятника, y"(t) — ускорение, а начальные условия, соответственно, начальное отклонение маятника у (0) =0.1 и начальную скорость у' (0)= 0. Второй способ решения ОДУ высшего порядка связан со сведением его к эквивалентной системе ОДУ первого порядка. Покажем на том же примере из листинга 11.3, как это делается. Действительно, если формально обозначить y0(t)sy(t), a yi(t)sy'(t)=y0'(t), то исходное уравнение запишется через функции y0(t) и y1(t) в виде системы двух ОДУ: Именно эта система решается в качестве примера в разд. 11.3. Таким образом, любое ОДУ N-ГО порядка, линейное относительно высшей производной, можно свести к эквивалентной системе N дифференциальных уравнений. |
Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
- Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.
В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.
Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.