Теория информации   ОИС   ТПОИ   визуальные среды - 4GL   технологии программирования

МАТЕМАТИЧЕСКАЯ ТЕОРИЯ ПЕРЕДАЧИ ИНФОРМАЦИИ

  1. Понятие информации
  2. Количество информации, и ее мера
  3. Свойства количества информации
  4. Понятие энтропии
  5. Свойства энтропии сообщений
  6. Избыточность сообщений
  7. Теоремы Шеннона
  8. Литература

Клод Шеннон

Математическая теория передачи информации - родилась как продолжение теории связи (проводной и радио) и заимствование теории энтропии Людвига Больцмана, которая была разработана им для понимания статистических процессов, происходящих в паровых машинах XIX века.

В теории передачи информации, неправильно называемой "теорией информации" исследуются узкие вопросы корректной передачи информации в технических системах передачи данных: каналах и линиях связи. Эта теория не рассматривает никаких иных свойств, форм и уровней информации, кроме ее статистической меры. Вне ее рассмотрения и все активные форма пеерработки информации: классификация, распознавание, моделирование, управление. Фактически эта теория есть теория статистичеких мер информации в каналах связи, а единственными критериями являются сохранение передаваемой информации от искажений и оптимизация пропускной способности каналов связи.

Количество информации, и ее статистическая мера

На вход системы передачи информации (СПИ) от источника информации подается совокупность сообщений, выбранных из ансамбля сообщений (рис. 1).

Рис. 1. Система передачи информации

Ансамбль сообщений – множество возможных сообщений с их вероятностными характеристиками – {Х, р(х)}. При этом: Х={х1, х2,…, хm} – множество возможных сообщений источника; i = 1, 2,…, m, где m – объем алфавита; p(xi) – вероятности появления сообщений, причем p(xi) і 0 и поскольку вероятности сообщений представляют собой полную группу событий, то их суммарная вероятность равна единице

.

Каждое сообщение несет в себе определенное количество информации. Определим количество информации, содержащееся в сообщении xi, выбранном из ансамбля сообщений источника {Х, р(х)}. Одним из параметров, характеризующих данное сообщение, является вероятность его появления – p(xi), поэтому естественно предположить, что количество информации I(xi) в сообщении xi является функцией p(xi). Вероятность появления двух независимых сообщений x1 и x2 равна произведению вероятностей p(x1, x2) = p(x1).p(x2), а содержащаяся в них информация должна обладать свойством аддитивности, т.е.:

I(x1, x2) = I(x1)+I(x2). (1)

Поэтому для оценки количества информации предложена логарифмическая мера:

. (2)

При этом наибольшее количество информации содержат наименее вероятные сообщения, а количество информации в сообщении о достоверном событии равно нулю. Т. к. все логарифмы пропорциональны, то выбор основания определяет единицу информации: logax = logbx/logba.

В зависимости от основания логарифма используют следующие единицы информации:

2 – [бит] (bynary digit – двоичная единица), используется при анализе ин-формационных процессов в ЭВМ и др. устройствах, функционирующих на основе двоичной системы счисления;

e – [нит] (natural digit – натуральная единица), используется в математических методах теории связи;

10 – [дит] (decimal digit – десятичная единица), используется при анализе процессов в приборах работающих с десятичной системой счисления.

Бит - двоичная единица статистической меры информации, количество информации, которое снимает неопределенность в отношении наступления одного из двух равновероятных (p0 = 0.5, p1 = 0.5), независимых событий.

Схожую меру другого иерархического уровня (комбинаторно-геометрического) - двоичный разряд часто путают с битом, считая, что байт (8 двоичных разрядов) = 8 битам, хотя это не так. (в двоичных разрядах не задана вероятность, а значит, не может быть определена мера от вероятности).

Среднее количество информации для всей совокупности сообщений можно получить путем усреднения по всем независимым событиям:

. (3)

Количество информации, в сообщении, состоящем из n не равновероятных его элементов равно (эта мера предложена в 1948 г. К. Шенноном):

. (4)

Для случая независимых равновероятных событий количество информации определяется (эта мера предложена в 1928 г. Р. Хартли):

            (5)

Кроме этих мер информации существуют и иные, производные от энтропии статистические меры:

- расстояние Кульбака как асимметричная информационная мера:

где p(x), q(x) - вероятности двух наборов случайных величин, а D - информационное расстояние от ансамбля {p} до элементов другого ансамбля {q}.

- дивергенция Кульбака как симметричная информационная мера:

где p(x), q(x) - вероятности двух наборов случайных величин, а D - расстояние между ансамблями {p} и {q}.

Свойства количества информации

1. Количество информации в сообщении обратно – пропорционально вероятности появления данного сообщения.

2. Свойство аддитивности – суммарное количество информации двух источников равно сумме информации источников.

3. Для события с одним исходом количество информации равно нулю.

4. Количество информации в дискретном сообщении растет в зависимости от увеличения объема алфавита – m.

Пример 1. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны: pi0 = pi1 = 1/2.

Количество информации равно:

I = n log m = 8 log2 2 = 8 бит.

Пример 2. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны:

pi0 = 3/4; pi1 = 1/4.

Количество информации равно:

Понятие энтропии

Энтропия - содержательность, мера неопределенности информации. Понятие энтропии известно с XIX века благодаря трудам трудам великого немецкого физика Рудольфа Клаузиуса, который ввел в 1851 году понятие энтропии для объемов газа и дал формулы ее вычисления из параметров газовой среды. Само же сущеностное значение энтропии не было тогда раскрыто.

Впервые, сущность энтропии и ее меру открыл в 1871 году великий физик Людвиг Больцман. Он рассматривал количество неопределенности в ансамбле молекул газа и решил проблему физического смысла энтропии как меру хаоса в ансамбле молекул (некотором объеме газа).

Энтропия - математическое ожидание H(x) случайной величины I(x) определенной на ансамбле {Х, р(х)}, т.е. она характеризует среднее значение количества информации, приходящееся на один символ.

. (6)

Определим максимальное значение энтропии Hmax(x). Воспользуемся методом неопределенного множителя Лагранжа -l для отыскания условного экстремума функции [6]. Находим вспомогательную функцию:

(7)

Представим вспомогательную функцию F в виде:

. (8)

Найдем максимум этой функции

т. к.

.

Как видно из выражения, величина вероятности pi не зависит от i, а это может быть в случае, если все pi равны, т.е. p1 =p2 =…=pm =1/m.

При этом выражение для энтропии равновероятных, независимых элементов равно:

. (9)

Найдем энтропию системы двух альтернативных событий с вероятностями p1 и p2. Энтропия равна

Свойства энтропии сообщений

1. Энтропия есть величина вещественная, ограниченная, не отрицательная, непрерывная на интервале 0 Ј p Ј 1.

2. Энтропия максимальна для равновероятных событий.

3. Энтропия для детерминированных событий равна нулю.

4. Энтропия системы двух альтернативных событий изменяется от 0 до 1.

Энтропия численно совпадает со средним количеством информации но принципиально различны, так как:

H(x) – выражает среднюю неопределенность состояния источника и является его объективной характеристикой, она может быть вычислена априорно, т.е. до получения сообщения при наличии статистики сообщений.

I(x) – определяется апостериорно, т.е. после получения сообщения. С получением информации о состоянии системы энтропия снижается.

Избыточность сообщений

Одной из информационных характеристик источника дискретных сообщений является избыточность, которая определяет, какая доля максимально-возможной энтропии не используется источником

, (10)

где μ – коэффициент сжатия.

Избыточность приводит к увеличению времени передачи сообщений, уменьшению скорости передачи информации, излишней загрузки канала, вместе с тем, избыточность необходима для обеспечения достоверности передаваемых данных, т.е. надежности СПД, повышения помехоустойчивости. При этом, применяя специальные коды, использующие избыточность в передаваемых сообщениях, можно обнаружить и исправить ошибки.

Пример 1. Вычислить энтропию источника, выдающего два символа 0 и 1 с вероятностями p(0) = p(1) = 1/m и определить его избыточность.

Решение: Энтропия для случая независимых, равновероятных элементов равна: H(x) = log2m = log22 = 1 [дв. ед/симв.]

При этом H(x) = Hmax(x) и избыточность равна R = 0.

Пример 2. Вычислить энтропию источника независимых сообщений, выдающего два символа 0 и 1 с вероятностями p(0) = 3/4, p(1) = 1/4.

Решение: Энтропия для случая независимых, не равновероятных элементов равна:

При этом избыточность равна R = 1–0,815=0,18

Пример 3. Определить количество информации и энтропию сообщения из пяти букв, если число букв в алфавите равно 32 и все сообщения равновероятные.

Решение: Общее число пятибуквенных сообщений равно: N = mn = 32

Энтропия для равновероятных сообщений равна:

H = I = – log2 1/N = log2325 = 5 log232 = 25 бит./симв.

Теоремы Шеннона

1. Теорема Шеннона - Хартли - (на самом деле теорема Хартли, выведенная им за 15 лет до Шеннона), одна из основных теорем теории информации о передаче сигналов по каналам связи при наличии помех, приводящих к искажениям. Пусть надлежит передать последовательность символов, появляющихся с определёнными вероятностями, причём имеется некоторая вероятность того, что передаваемый символ в процессе передачи будет искажён. Простейший способ, позволяющий надёжно восстановить исходную последовательность по получаемой, состоит в том, чтобы каждый передаваемый символ повторять большое число (N) раз. Однако это приведёт к уменьшению скорости передачи в N раз, т. е. сделает её близкой к нулю. Ш. т. утверждает, что можно указать такое, зависящее только от рассматриваемых вероятностей положительное число v, что при сколько угодно малом ?>0 существуют способы передачи со скоростью v'(v' < v), сколь угодно близкой к v, дающие возможность восстанавливать исходную последовательность с вероятностью ошибки, меньшей ?. В то же время при скорости передачи v', большей v, это уже невозможно. Упомянутые способы передачи используют надлежащие «помехоустойчивые» коды. Критическая скорость v определяется из соотношения Hv = C, где Н — Энтропия источника на символ, С — ёмкость канала в двоичных единицах в секунду.
Рассматривая все возможные многоуровневые и многофазные методы шифрования, теорема Шеннона — Хартли утверждает, что пропускная способность канала C, означающая теоретическую верхнюю границу скорости передачи данных, которые можно передать с данной средней мощностью сигнала S через аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности N равна:

где
C — пропускная способность канала, бит/с;
B — полоса пропускания канала, Гц;
S — полная мощность сигнала над полосой пропускания, Вт или В?;
N — полная шумовая мощность над полосой пропускания, Вт или В?;
S/N — частное от деления отношения сигнала к его шуму (SNR) на гауссовский шум, выраженное как отношение мощностей.

2. Теорема Шеннона-Котельникова, теорема отсчетов - (на самом деле теорема Котельникова, доказанная им в 1933 г., когда Шеннону было еще 17 лет)

Литература

  1. Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.
  2. Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.
  3. Кловский Д.Д. Теория передачи сигналов. – М.: Связь, 1984.
  4. Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР, 2008. – 320 с.
  5. Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.
  6. Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы матроиды, алгоритмы. – Ижевск: НИЦ “РХД”, 2001, 288 стр.
Знаете ли Вы, что, когда некоторые исследователи, пытающиеся примирить релятивизм и эфирную физику, говорят, например, о том, что космос состоит на 70% из "физического вакуума", а на 30% - из вещества и поля, то они впадают в фундаментальное логическое противоречие. Это противоречие заключается в следующем.

Вещество и поле не есть что-то отдельное от эфира, также как и человеческое тело не есть что-то отдельное от атомов и молекул его составляющих. Оно и есть эти атомы и молекулы, собранные в определенном порядке. Также и вещество не есть что-то отдельное от элементарных частиц, а оно состоит из них как базовой материи. Также и элементарные частицы состоят из частиц эфира как базовой материи нижнего уровня. Таким образом, всё, что есть во вселенной - это есть эфир. Эфира 100%. Из него состоят элементарные частицы, а из них всё остальное. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 30.10.2017 - 06:17: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
19.10.2017 - 04:24: Беседка - Chatter -> ЭПИСТОЛЯРНАЯ ФИЗИКА - Карим_Хайдаров.
11.10.2017 - 05:10: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Эксперименты с трансформатором Тесла - Карим_Хайдаров.
05.10.2017 - 11:03: СОВЕСТЬ - Conscience -> Проблема государственного терроризма - Карим_Хайдаров.
04.10.2017 - 15:26: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
04.10.2017 - 05:02: Беседка - Chatter -> "Зенит"ы с "Протон"ами будут падать - Карим_Хайдаров.
03.10.2017 - 18:16: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
03.10.2017 - 07:42: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вазгена Авагяна - Карим_Хайдаров.
03.10.2017 - 07:24: ЦИТАТЫ ЧУЖИХ ФОРУМОВ - Outside Quotings -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
03.10.2017 - 05:48: Беседка - Chatter -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
02.10.2017 - 19:04: АСТРОФИЗИКА - Astrophysics -> Апериодическая комета C/2014 Q2 Lovejoy - Карим_Хайдаров.
02.10.2017 - 14:57: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution