|
На вход системы передачи информации (СПИ) от источника информации подается совокупность сообщений, выбранных из ансамбля сообщений (рис. 1).
Ансамбль сообщений – множество возможных сообщений с их вероятностными характеристиками – {Х, р(х)}. При этом: Х={х1, х2,…, хm} – множество возможных сообщений источника; i = 1, 2,…, m, где m – объем алфавита; p(xi) – вероятности появления сообщений, причем p(xi) і 0 и поскольку вероятности сообщений представляют собой полную группу событий, то их суммарная вероятность равна единице
Каждое сообщение несет в себе определенное количество информации. Определим количество информации, содержащееся в сообщении xi, выбранном из ансамбля сообщений источника {Х, р(х)}. Одним из параметров, характеризующих данное сообщение, является вероятность его появления – p(xi), поэтому естественно предположить, что количество информации I(xi) в сообщении xi является функцией p(xi). Вероятность появления двух независимых сообщений x1 и x2 равна произведению вероятностей p(x1, x2) = p(x1).p(x2), а содержащаяся в них информация должна обладать свойством аддитивности, т.е.:
I(x1, x2) = I(x1)+I(x2).
(1)Поэтому для оценки количества информации предложена логарифмическая мера:
При этом наибольшее количество информации содержат наименее вероятные сообщения, а количество информации в сообщении о достоверном событии равно нулю. Т. к. все логарифмы пропорциональны, то выбор основания определяет единицу информации: logax = logbx/logba.
В зависимости от основания логарифма используют следующие единицы информации:
2 – [бит] (bynary digit – двоичная единица), используется при анализе ин-формационных процессов в ЭВМ и др. устройствах, функционирующих на основе двоичной системы счисления;
e – [нит] (natural digit – натуральная единица), используется в математических методах теории связи;
10 – [дит] (decimal digit – десятичная единица), используется при анализе процессов в приборах работающих с десятичной системой счисления.
Схожую меру другого иерархического уровня (комбинаторно-геометрического) - двоичный разряд часто путают с битом, считая, что байт (8 двоичных разрядов) = 8 битам, хотя это не так. (в двоичных разрядах не задана вероятность, а значит, не может быть определена мера от вероятности).
Среднее количество информации для всей совокупности сообщений можно получить путем усреднения по всем независимым событиям:
Количество информации, в сообщении, состоящем из n не равновероятных его элементов равно (эта мера предложена в 1948 г. К. Шенноном):
Для случая независимых равновероятных событий количество информации определяется (эта мера предложена в 1928 г. Р. Хартли):
Кроме этих мер информации существуют и иные, производные от энтропии статистические меры:
- расстояние Кульбака как асимметричная информационная мера:
где p(x), q(x) - вероятности двух наборов случайных величин, а D - информационное расстояние от ансамбля {p} до элементов другого ансамбля {q}.
- дивергенция Кульбака как симметричная информационная мера:
где p(x), q(x) - вероятности двух наборов случайных величин, а D - расстояние между ансамблями {p} и {q}.
1. Количество информации в сообщении обратно – пропорционально вероятности появления данного сообщения.
2. Свойство аддитивности – суммарное количество информации двух источников равно сумме информации источников.
3. Для события с одним исходом количество информации равно нулю.
4. Количество информации в дискретном сообщении растет в зависимости от увеличения объема алфавита – m.
Пример 1.
Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны: pi0 = pi1 = 1/2.Количество информации равно:
I = n log m = 8 log2 2 = 8 бит.
Пример 2. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны:
pi0 = 3/4; pi1 = 1/4.
Количество информации равно:
Впервые, сущность энтропии и ее меру открыл в 1871 году великий физик Людвиг Больцман. Он рассматривал количество неопределенности в ансамбле молекул газа и решил проблему физического смысла энтропии как меру хаоса в ансамбле молекул (некотором объеме газа).
Определим максимальное значение энтропии Hmax(x). Воспользуемся методом неопределенного множителя Лагранжа -l для отыскания условного экстремума функции [6]. Находим вспомогательную функцию:
Представим вспомогательную функцию
F в виде:Найдем максимум этой функции
Как видно из выражения, величина вероятности
pi не зависит от i, а это может быть в случае, если все pi равны, т.е. p1 =p2 =…=pm =1/m.При этом выражение для энтропии равновероятных, независимых элементов равно:
Найдем энтропию системы двух альтернативных событий с вероятностями
p1 и p2. Энтропия равна1. Энтропия есть величина вещественная, ограниченная, не отрицательная, непрерывная на интервале 0 Ј p Ј 1.
2. Энтропия максимальна для равновероятных событий.
3. Энтропия для детерминированных событий равна нулю.
4. Энтропия системы двух альтернативных событий изменяется от 0 до 1.
Энтропия численно совпадает со средним количеством информации но принципиально различны, так как:
H(x)
– выражает среднюю неопределенность состояния источника и является его объективной характеристикой, она может быть вычислена априорно, т.е. до получения сообщения при наличии статистики сообщений.I(x)
– определяется апостериорно, т.е. после получения сообщения. С получением информации о состоянии системы энтропия снижается.Одной из информационных характеристик источника дискретных сообщений является избыточность, которая определяет, какая доля максимально-возможной энтропии не используется источником
где
μ – коэффициент сжатия.Избыточность приводит к увеличению времени передачи сообщений, уменьшению скорости передачи информации, излишней загрузки канала, вместе с тем, избыточность необходима для обеспечения достоверности передаваемых данных, т.е. надежности СПД, повышения помехоустойчивости. При этом, применяя специальные коды, использующие избыточность в передаваемых сообщениях, можно обнаружить и исправить ошибки.
Пример 1. Вычислить энтропию источника, выдающего два символа 0 и 1 с вероятностями p(0) = p(1) = 1/m и определить его избыточность.
Решение: Энтропия для случая независимых, равновероятных элементов равна: H(x) = log2m = log22 = 1 [дв. ед/симв.]
При этом H(x) = Hmax(x) и избыточность равна R = 0.
Пример 2.
Вычислить энтропию источника независимых сообщений, выдающего два символа 0 и 1 с вероятностями p(0) = 3/4, p(1) = 1/4.Решение:
Энтропия для случая независимых, не равновероятных элементов равна:При этом избыточность равна
R = 1–0,815=0,18Пример 3.
Определить количество информации и энтропию сообщения из пяти букв, если число букв в алфавите равно 32 и все сообщения равновероятные.Решение: Общее число пятибуквенных сообщений равно: N = mn = 32
Энтропия для равновероятных сообщений равна:
H = I = – log2 1/N = log2325 = 5 log232 = 25 бит./симв.
1. Теорема Шеннона - Хартли - (на самом деле теорема Хартли, выведенная им за 15 лет до Шеннона), одна из основных теорем теории информации о передаче сигналов по каналам связи при наличии помех, приводящих к искажениям. Пусть надлежит передать последовательность символов, появляющихся с определёнными вероятностями, причём имеется некоторая вероятность того, что передаваемый символ в процессе передачи будет искажён. Простейший способ, позволяющий надёжно восстановить исходную последовательность по получаемой, состоит в том, чтобы каждый передаваемый символ повторять большое число (N) раз. Однако это приведёт к уменьшению скорости передачи в N раз, т. е. сделает её близкой к нулю. Ш. т. утверждает, что можно указать такое, зависящее только от рассматриваемых вероятностей положительное число v, что при сколько угодно малом ?>0 существуют способы передачи со скоростью v'(v' < v), сколь угодно близкой к v, дающие возможность восстанавливать исходную последовательность с вероятностью ошибки, меньшей ?. В то же время при скорости передачи v', большей v, это уже невозможно. Упомянутые способы передачи используют надлежащие «помехоустойчивые» коды. Критическая скорость v определяется из соотношения Hv = C, где Н — Энтропия источника на символ, С — ёмкость канала в двоичных единицах в секунду.
Рассматривая все возможные многоуровневые и многофазные методы шифрования, теорема Шеннона — Хартли утверждает, что пропускная способность канала C, означающая теоретическую верхнюю границу скорости передачи данных, которые можно передать с данной средней мощностью сигнала S через аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности N равна:
где
C — пропускная способность канала, бит/с;
B — полоса пропускания канала, Гц;
S — полная мощность сигнала над полосой пропускания, Вт или В?;
N — полная шумовая мощность над полосой пропускания, Вт или В?;
S/N — частное от деления отношения сигнала к его шуму (SNR) на гауссовский шум, выраженное как отношение мощностей.
2. Теорема Шеннона-Котельникова, теорема отсчетов - (на самом деле теорема Котельникова, доказанная им в 1933 г., когда Шеннону было еще 17 лет)
Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.
Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").
Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.
Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.
Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.