к оглавлению

Сигналы с угловой модуляцией

При угловой модуляции (angle modulation) в несущем гармоническом колебании u(t) = Umcos(wt+j) значение амплитуды колебаний Um остается постоянным, а информация s(t) переносится либо на частоту w, либо на фазовый угол j. И в том, и в другом случае текущее значение фазового угла гармонического колебания u(t) определяет аргумент y (t) = wt+j, который называют полной фазой колебания.

Фазовая модуляция (ФМ, phase modulation - PM). При фазовой модуляции значение фазового угла постоянной несущей частоты колебаний wo пропорционально амплитуде модулирующего сигнала s(t). Соответственно, уравнение ФМ – сигнала определяется выражением:

u(t) = Um cos[wot + kЧ s(t)], (9.2.1)

где k – коэффициент пропорциональности. Пример однотонального ФМ – сигнала приведен на рис. 9.2.1.

При s(t) = 0, ФМ – сигнал является простым гармоническим колебанием и показан на рисунке функцией uo(t). С увеличением значений s(t) полная фаза колебаний y (t)=wot+kЧ s(t) нарастает во времени быстрее и опережает линейное нарастание wot. Соответственно, при уменьшении значений s(t) скорость роста полной фазы во времени спадает. В моменты экстремальных значений s(t) абсолютное значение фазового сдвига Dy между ФМ – сигналом и значением wot немодулированного колебания также является максимальным и носит название девиации фазы (вверх Djв = kЧ smax(t), или вниз Djн = kЧ smin(t) с учетом знака экстремальных значений модулирующего сигнала).

Для колебаний с угловой модуляцией применяется также понятие мгновенной частоты (instantaneous frequency), под которой понимают производную от полной фазы по времени:

ω(t) = y (t)/dt = ωo + k ds(t)/dt.

Полная фаза колебаний в произвольный момент времени может быть определена интегрированием мгновенной частоты:

y (t) =ω(t) dt, или y (t) =ω(t) dt +jo.

Частотная модуляция (ЧМ, frequency modulation - FM) характеризуется линейной связью модулирующего сигнала с мгновенной частотой колебаний, при которой мгновенная частота колебаний образуется сложением частоты высокочастотного несущего колебания wo со значением амплитуды модулирующего сигнала с определенным коэффициентом пропорциональности:

w(t) = wo + kЧ s(t). (9.2.2)

Соответственно, полная фаза колебаний:

y(t) = ωo(t) + ks(t) dt, или y(t) = ωo(t) + ks(t) dt +jo.

Уравнение ЧМ – сигнала:

u(t) = Um cos(ωot+ks(t) dt +jo). (9.2.3)

Аналогично ФМ, для характеристики глубины частотной модуляции используются понятия девиации частоты вверх Dwв = kЧ smax(t), и вниз Dwн = kЧ smin(t).

Частотная и фазовая модуляция взаимосвязаны. Если изменяется начальная фаза колебания, изменяется и мгновенная частота, и наоборот. По этой причине их и объединяют под общим названием угловой модуляции (УМ). По форме колебаний с угловой модуляцией невозможно определить, к какому виду модуляции относится данное колебание, к ФМ или ЧМ, а при достаточно гладких функциях s(t) формы сигналов ФМ и ЧМ вообще практически не отличаются.

Однотональная угловая модуляция. Рассмотрим гармонический модулирующий сигнал с постоянной частотой колебаний ω. Начальная фаза колебаний:

j(t) = b sin(Wt),

где b - индекс угловой модуляции (modulation index), которым задается интенсивность колебаний начальной фазы. Полная фаза модулированного сигнала с учетом несущей частоты ωо:

y(t) = wot + b sin(Wt).

Уравнение модулированного сигнала:

u(t) = Um cos(wot + b sin(Wt)). (9.2.4)

Мгновенная частота колебаний:

ω(t) = dy(t)/dt = wo + bW cos(Wt).

Как следует из этих формул, и начальная фаза, и мгновенная частота изменяется по гармоническому закону. Максимальное отклонение от среднего значения ωо равно ωd = bW, и получило название девиации частоты (frequency deviation). Отсюда, индекс угловой модуляции равен отношению девиации частоты к частоте модулирующего сигнала:

b = ωd/W. (9.2.5)

Различия между частотной и фазовой модуляцией проявляются при изменении частоты W модулирующего сигнала.

При фазовой модуляции девиация частоты прямо пропорциональна W, а индекс угловой модуляции от частоты модулирующего сигнала не зависит:

b = const, ωd = b W.

Напротив, при ЧМ постоянным параметром модуляции является девиация частоты, при этом индекс модуляции обратно пропорционален частоте модулирующего сигнала:

ωd = const, b = ωd/W.

Спектры сигналов с угловой модуляцией.

Формулу (9.2.4) однотональной модуляции можно преобразовать к виду:

u(t) = Umcos(sin(Wt)) cos(wot) - Umsin(sin(Wt)) sin(wot). (9.2.6)

При малых значениях индекса угловой модуляции (b<<1, узкополосная модуляция) имеют место приближенные равенства:

cos(sin(Wt)) » 1, sin(sin(Wt)) » sin(wot).

При их использовании в (9.2.6), получаем:

u(t) » Umcos(wot) + (bUm/2)cos[(wo+W)t] + (-bUm/2)cos[(wo-W)t]. (9.2.7)

Сравнение данного выражения с формулой АМ – сигнала (9.1.4) позволяет сделать вывод, что амплитудные спектры однотональных ФМ и ЧМ сигналов при b<<1 практически аналогичны АМ сигналам и также содержат верхнюю и нижнюю боковые частоты wo+W и wo-W. Различие заключается только в смене знака амплитуды нижней боковой частоты на минус, т.е. в дополнительном фазовом сдвиге нижней боковой частоты на 1800 относительно верхней боковой частоты. Соответственно, гармонические АМ сигналы могут быть трансформированы в ЧМ сигналы изменением на 180о начальной фазы одной из боковых полос. Заметим также, что при малых значениях индекса b основная мощность сигнала приходится на несущую частоту.

Математическая модель однотональных ЧМ и ФМ сигналов с любым значением индекса модуляции b в общем случае получается разложением функции (9.2.4) в следующий ряд:

u(t)=UmJk(m) cos[(wo+kW)t],

где Jk(m) – функция Бесселя k-го индекса от аргумента m=b. Из этого уравнения следует, что спектр сигнала содержит бесконечное число составляющих - нижних и верхних боковых колебаний, с частотами wo± kW, которые соответствуют гармоникам частоты модуляции, и с амплитудами, пропорциональными значениям Jk(m). Амплитуды пяти первых гармоник и несущей частоты при Um=1 в зависимости от индекса модуляции приведены на рис. 9.2.2.

При малой величине индекса b значимые амплитудные значения имеют только первые гармоники. С ростом величины b количество значимых боковых составляющих увеличивается, а энергия сигнала перераспределяется на боковые составляющие. Функции Бесселя имеют колебательный характер, поэтому спектр при удалении от несущей частоты ωо спадает немонотонно. На рис. 9.2.2 можно также видеть, что при определенных значениях индекса модуляции (2.405, 5.52, 8.654 и т.д.) несущая частота wo в спектре сигнала полностью отсутствует. Форма физических амплитудный спектров модулированных сигналов относительно несущей частоты при разных индексах модуляции приведена на рис. 9.2.3 .

С ростом индекса модуляции полоса частот, занимаемая сигналом, расширяется. Практическая ширина спектра сигнала с угловой модуляцией определяется по формуле:

Ппракт = 2(b+1)W, (9.2.8)

т.е. спектральными составляющими с номерами k>(b+1) пренебрегают. Формирование реальных сигналов, как правило, выполняется при b>>1, при этом эффективная ширина спектра равна удвоенной девиации частоты:

Ппракт » 2bW = 2wd. (9.2.9)

Рис. 9.2.3. Модули спектров ЧМ сигнала при разных индексах модуляции.

(несущая частота 2500 Гц, гармоника модуляции 25 Гц, шкала частот в Гц относительно несущей)

Отсюда следует, что по сравнению с АМ – сигналами, полоса частот которых равна 2W, для передачи сигналов с угловой модуляцией требуется полоса частот, в b раз большая. С другой стороны, именно широкополосность ЧМ и ФМ сигналов обеспечивает их большую помехоустойчивость по сравнению с АМ сигналами.

Для функций Бесселя имеет также место: J-k(m) = (-1)kJk(m). Это означает, что начальные фазы боковых колебаний с частотами wo+kW и wo-kW совпадают при четных k, и отличаются на 180о при нечетных k.

Сигналы с многотональной угловой модуляцией отличаются еще большей сложностью спектрального состава. В их спектре присутствуют не только боковые частоты с гармониками частот модулирующего сигнала, но и боковые комбинационные частоты типа wo± W1± W2± ...Wi, со всеми возможными комбинациями частот модулирующего сигнала Wi. При непрерывном спектре модулирующего сигнала спектры ЧМ и ФМ сигналов также становятся непрерывными.

Демодуляция УМ – сигналов много сложнее демодуляции сигналов АМ.

При демодуляции полностью зарегистрированных цифровых сигналов обычно используется метод формирования комплексного аналитического сигнала с помощью преобразования Гильберта:

ua(t) = u(t) + j uh(t),

где uh(t) – аналитически сопряженный сигнал или квадратурное дополнение сигнала u(t), которое вычисляется сверткой сигнала u(t) с оператором Гильберта (1/πt):

uh(t) = (1/π)u(t') dt'/(t-t').

Полная фаза колебаний представляет собой аргумент аналитического сигнала:

y(t) = arg(ua(t)).

Дальнейшие операции определяются видом угловой модуляции. При демодуляции ФМ сигналов из фазовой функции вычитается значение немодулированной несущей ωоt:

j(t) = y(t) - ωot.

При частотной модуляции фазовая функция дифференцируется с вычитанием из результата значения частоты ωо:

j(t) = y(t)/dt - ωo.

В принципе, данный метод может применяться и в реальном масштабе времени, но с определенной степенью приближения, поскольку оператор Гильберта слабо затухает.

Обычно в реальном масштабе времени используется квадратурная обработка, при которой входной сигнал умножается на два опорных колебания со сдвигом фазы между колебаниями в 90о:

u1(t) = u(t) cos(ωot) = Um cos(ωot+j(t) cos(ωot) = Ѕ Um cos j(t) + Ѕ cos(2wot+j(t)),

u2(t) = u(t) sin(ωot) = Um cos(ωot+j(t) sin(ωot) = - Ѕ Um sin j(t) + Ѕ sin(2wot+j(t)).

Из этих двух сигналов фильтрами низких частот выделяются низкочастотные колебания, и формируется аналитический сигнал:

ua(t) = Ѕ Um cos j(t) - Ѕj Um sin j(t).

Аргумент этого аналитического сигнала, как и в первом случае, представляет полную фазу колебаний, обработка которой выполняется аналогично.

Квадратурная модуляция позволяет модулировать несущую частоту одновременно двумя сигналами путем модуляции амплитуды несущей одним сигналом, и фазы несущей другим сигналом. Уравнение результирующих колебаний амплитудно-фазовой модуляции:

s(t) = u(t) cos(ωot+j(t)).

Сигнал s(t) обычно формируют в несколько другой последовательности, с учетом последующей демодуляции. Раскроем косинус суммы и представим сигнал в виде суммы двух АМ-колебаний.

s(t) = u(t) cos(ωot) cos j(t) – u(t) sin(ωot) sin j(t).

При a(t) = u(t) cos j(t) и b(t) = -u(t) sin j(t), сигналы a(t) и b(t) могут быть использованы в качестве модулирующих сигналов несущих колебаний cos(ωot) и sin(ωot), сдвинутых по фазе на 90о относительно друг друга:

s(t) = a(t) cos(ωot) + b(t) sin(ωot).

Полученный сигнал называют квадратурным (quadrature), а способ модуляции - квадратурной модуляцией (КАМ).

Спектр квадратурного сигнала может быть получен непосредственно по уравнению балансной модуляции (9.1.17) для суммы двух сигналов:

S(ω) = Ѕ A(ω+ωo) + Ѕ A(ω-ωo) – Ѕj B(ω+ωo) + Ѕj B(ω-ωo).

Демодуляция квадратурного сигнала соответственно выполняется умножением на два опорных колебания, сдвинутых относительно друг друга на 90о:

s1(t) = s(t) cos ωot = Ѕ a(t) + Ѕ a(t) cos 2ωot + Ѕ b(t) sin 2ωot,

s2(t) = s(t) sin ωot = Ѕ b(t) + Ѕ a(t) sin 2ωot - Ѕ b(t) cos 2ωot.

Низкочастотные составляющие a(t) и b(t) выделяются фильтром низких частот. Как и при балансной амплитудной модуляции, для точной демодуляции сигналов требуется точное соблюдение частоты и начальной фазы опорного колебания.

Пример моделирования квадратурной модуляции в системе Mathcad.

Моделирование выполняется в дискретной форме.

N := 2999 n := 0 .. N Dt := 0.001 'Интервал и шаг дискретизации (в сек).

f0 := 50 f1 := 2 f2 := 3 'Частоты в Гц несущей, первого и второго сигналов.

s1n := sin(2·p·f1·n·Dt) 'Первый модулирующий сигнал (моногармоника с амплитудой 1).

s2n := sin(2·p·f2·n·Dt) 'Первый модулирующий сигнал (моногармоника с амплитудой 1).

b :=10 jn := b·s2n 'Перенос информации s2n на фазу

un := s1n·cos(2·p·f0·n·Dt+jn) 'Амплитудно-фазовая модуляция

U := CFFT(u) Df := 1/[(N+1)·Dt] 'БПФ и шаг по частоте

an := s1n·cos(jn) bn := s1n·sin(jn) 'Формирование модулирующих сигналов

sn := an·cos(2·p·f0·n·Dt) + bn·sin(2·p·f0·n·Dt) 'Квадратурный сигнал. Сравнением с сигналом

'un нетрудно убедится в их идентичности,

'а, следовательно, идентичны и их спектры.

Демодуляция квадратурного сигнала.

u1n := sn·cos(2·p·f0·n·Dt) 'Раздельная синхронная демодуляция сигналов an и bn. Графики

u2n := sn·sin(2·p·f0·n·Dt) 'сигналов u2n и bn смешены на -2 для представления в одном поле.

 

U1 := CFFT(u1) U2 := CFFT(u2) 'Спектры сигналов, БПФ.

M := 50/Df m := M .. N+1-M U1m := 0 U2m := 0 'Удаление высоких частот (после 50 Гц).

u3 := ICFFT(U1) u4 := ICFFT(U2) 'ОБПФ оставшихся низких частот спектра. На графиках

'амплитуды сигналов u3n и u4n увеличены в 2 раза

'для сопоставления c исходными сигналами an и bn.

к оглавлению


Знаете ли Вы, в чем фокус эксперимента Майкельсона?

Эксперимент А. Майкельсона, Майкельсона - Морли - действительно является цирковым фокусом, загипнотизировавшим физиков на 120 лет.

Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
- Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.

В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.

Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution