к оглавлению

Системы преобразования сигналов

Сигналы, в любой форме материального представления, содержат определенную полезную информацию. Если при преобразованиях сигналов происходит нарушение заключенной в них информации (частичная утрата, количественное изменение соотношения информационных составляющих или параметров, и т.п.), то такие изменения называются искажениями сигнала. Если полезная информация остается неизменной или адекватной содержанию во входном сигнале, то такие изменения называются преобразованиями сигнала.

Любые изменения сигналов сопровождаются изменением их спектра, и по характеру этого изменения разделяются на два вида: линейные и нелинейные. К нелинейным относят изменения, при которых в составе спектра сигналов появляются новые гармонические составляющие, отсутствующие во входном сигнале. При линейных изменениях сигналов изменяются амплитуды и/или начальные фазы гармонических составляющих спектра. И линейные, и нелинейные изменения сигналов могут происходить как с сохранением полезной информации, так и с ее искажением. Это зависит не только от характера изменения спектра сигналов, но и от спектрального состава самой полезной информации.

Общее понятие систем. Преобразование и обработка сигналов осуществляется в системах. Понятия сигнала и системы неразрывны, так как любой сигнал существует в пределах какой-либо системы. Система обработки сигналов может быть реализована как в материальной форме (специальное устройство, измерительный прибор, совокупность физических объектов с определенной структурой взаимодействия и т.п.), так и программно на ЭВМ или любом другом специализированном вычислительном устройстве. Форма реализации системы существенного значения не имеет, и определяет только ее возможности при анализе и обработке сигналов.

Безотносительно к назначению система всегда имеет вход, на который подается внешний входной сигнал, в общем случае многомерный, и выход, с которого снимается обработанный выходной сигнал. Собственно система представляет собой системный оператор (алгоритм) преобразования входного сигнала s(t) – воздействия или возбуждения, в сигнал на выходе системы y(t) – отклик или выходную реакцию системы. Символическое обозначение операции преобразования (трансформации сигнала): y(t) = T[s(t)].

Системный оператор T - это набор правил преобразования (transformation) сигнала s(t) в сигнал y(t). Так, например, в самом простейшем случае таким правилом может быть таблица перекодировки входных сигналов в выходные.

Для детерминированных входных сигналов соотношение между выходными и входными сигналами всегда однозначно задается системным оператором. В случае реализации на входе системы случайного входного процесса происходит изменение статистических характеристик сигнала (математического ожидания, дисперсии, корреляционной функции и пр.), которое также определяется системным оператором.

Для полного определения системы необходимо задание характера, типа и области допустимых величин входных и выходных сигналов. По типу обработки входных сигналов они обычно подразделяются на системы непрерывного времени для обработки сигналов в процессе измерений, и цифровые системы для обработки данных, зарегистрированных на промежуточных носителях. Совокупность системного оператора Т и областей входных и выходных сигналов образует математическую модель системы.

Линейные и нелинейные системы составляют два основных класса систем обработки сигналов.

Термин линейности (linear) означает, что система преобразования сигналов должна иметь произвольную, но в обязательном порядке линейную связь между входным сигналом (возбуждением) и выходным сигналом (откликом) с определенным изменением спектрального состава входного сигнала (усиление или подавление определенных частотных составляющих сигнала. В нелинейных (nonlinear) системах связь между входным и выходным сигналом определяется произвольным нелинейным законом с дополнением частотного состава входного сигнала частотными составляющими, отсутствующими во входном сигнале.

Стационарные и нестационарные системы. Система считается стационарной и имеет постоянные параметры, если ее свойства (математический алгоритм оператора преобразования) в пределах заданной точности не зависят от входного и выходного сигналов и не изменяются ни во времени, ни от каких-либо других внешних факторов. В противном случае система является нестационарной, и называется параметрической или системой с переменными параметрами. Среди последних большое значение имеют так называемые адаптивные системы обработки данных. В этих системах производится, например, оценивание определенных параметров входных и выходных сигналов, по результатам сравнения которых осуществляется подстройка параметров преобразования (переходной характеристики системы) таким образом, чтобы обеспечить оптимальные по производительности условия обработки сигналов или минимизировать погрешность обработки.

Основные системные операции. К базовым линейным операциям, из которых могут быть сформированы любые линейные операторы преобразования, относятся операции скалярного умножения, сдвига и сложения сигналов:

y(t) = c ґ s(t), y(t) = s(t-Dt), y(t) = a(t)+b(t).

Для нелинейных систем выделим важный тип безинерционных операций нелинейной трансформации сигнала, результаты которой зависят только от его входных значений. К ним относятся, например, операции квадратирования и логарифмирования сигнала:

y(t) = [s(t)]2, y(t) = log[s(t)].

к оглавлению


Знаете ли Вы, что электромагнитное и другие поля есть различные типы колебаний, деформаций и вариаций давления в эфире.

Понятие же "физического вакуума" в релятивистской квантовой теории поля подразумевает, что во-первых, он не имеет физической природы, в нем лишь виртуальные частицы у которых нет физической системы отсчета, это "фантомы", во-вторых, "физический вакуум" - это наинизшее состояние поля, "нуль-точка", что противоречит реальным фактам, так как, на самом деле, вся энергия материи содержится в эфире и нет иной энергии и иного носителя полей и вещества кроме самого эфира.

В отличие от лукавого понятия "физический вакуум", как бы совместимого с релятивизмом, понятие "эфир" подразумевает наличие базового уровня всей физической материи, имеющего как собственную систему отсчета (обнаруживаемую экспериментально, например, через фоновое космичекое излучение, - тепловое излучение самого эфира), так и являющимся носителем 100% энергии вселенной, а не "нуль-точкой" или "остаточными", "нулевыми колебаниями пространства". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution