к оглавлению         на главную

Возвращение в Париж

Почти два года провел Анри в Кане. Этот период оказался весьма важным, если не решающим, для его последующей судьбы. Именно здесь произошли те свершения, которые на долгие годы определили его жизнь и научную деятельность. Дебют молодого математика был весьма впечатляющим. В нем уже чувствовалась заявка на свое творческое кредо, на свой, индивидуальный стиль научного мышления. Развитый им подход оценивали впоследствии как “дерзкий поступок двадцатисемилетнего ученого, осмелившегося порвать с полувековой традицией”.

Теория фуксовых функций, как продукт тесного переплетения и взаимопроникновения самых различных идеи и методов, родилась на перекрестке ведущих математических теорий прошлого столетия: теории дифференциальных уравнений, теории инвариантов, неевклидовой геометрии, теории групп, теории эллиптических функций. Вчерашний студент, перешагнув через переходный этап, сразу же явил ученому миру зрелость вполне сложившегося таланта, с" широким кругозором и необычайным многообразием своих внутренних возможностей. Не имеет дажо смысла говорить о “раннем Пуанкаре”, такого Пуанкаре попросту не было, не было периода первоначальных исканий и ученичества, который принято называть “порой надежд”. От самого порога Горной школы он вышел на уровень лучших математиков своего времени.

Фуксовы функции составили первую главу в научном наследии знаменитого ученого. “Именно этой первой главе и суждено было несколько десятилетий спустя первой достичь того состояния, когда о математической теории начинают говорить, что она уже “стала классической”, — пишет Г. Фрейденталь. Эллиптические функции, считавшиеся до этого одним из прекраснейших достижений математики XIX века, оказались теперь частным случаем фуксовых функций, созданных в результате грандиозного обобщения, предпринятого Пуанкаре. Открытие этих функций позволило решить одну из важнейших проблем математического естествознания — интегрирование линейных дифференциальных уравнений с алгебраическими коэффициентами. С этой целью Пуанкаре и начал свои исследования. Однако значение фуксовых, ныне ав-томорфных, функций выходит далеко за рамки этого приложения.

Почти сразу же выяснилось, что применение их в теории алгебраических форм сулит многообещающие возможности. К этой мысли пришел сам Пуанкаре. Вот как он рассказывает об этом: “Я занимался изучением некоторых вопросов арифметики без особого успеха, не подозревая, что предмет моих исследований может иметь какую-то связь с моими прежними работами (по теории фуксовых функций). Разочарованный своими неудачами, я решил провести несколько дней на побережье и поразмыслить о совсем других вещах. Однажды, когда я прогуливался по обрывистому берегу, мне пришла в голову идея, столь же краткая, сколь неожиданная и вполне определенная, что арифметические преобразования неопределенных тернарных квадратических форм должны быть тождественны преобразованиям неевклидовой геометрии. Вернувшись в Кан, я тщательно обдумал эту идею и попытался вывести из нее некоторые следствия”.

Пуанкаре настолько глубоко проникся своими исследованиями, что кажется, будто не он в мучительном напряжении ищет решения стоящих перед ним проблем, а они охотятся за ним и преследуют его, являясь ему в самых неожиданных местах и обстоятельствах. Эту характерную особенность его творчества сумел уловить даже ректор Канского университета, отметивший как-то в одном из конфиденциальных разговоров: “Господин Пуанкаре — это математик великих достоинств, неотступно осаждаемый объектом своих исследований”. Внезапно озарившая Пуанкаре идея позволила ему с помощью аппарата фуксовых групп добиться значительных результатов в изучении тернарных форм. Впоследствии стали даже говорить, что фуксовы функции вручили Пуанкаре “ключи от алгебраического мира”.

Таких отомкнутых “миров” было немало. Решая проблему упиформизации алгебраических зависимостей между двумя переменными (то, что потом получило название 22-й проблемы Гильберта), Пуанкаре использовал открытые им функции. Не раз он возвращался к этой проблеме в своем последующем творчестве и в 1907 году одновременно с П. Кебе дал ее окончательное решение. Связав фуксовы функции с такой далекой от них областью математики, как теория чисел, Пуанкаре сумел представить некоторые проблемы этой теории в совершенно новом, необычном освещении. В его работах бе-Рет свое начало также арифметическая теория автоморф-ных функций, которая затем усиленно разрабатывалась Другими учеными. Пуанкаре принадлежит заслуга введения в математику фуксовых групп, а развитый им метод представления этих групп jiepes фундаментальную область стал одним из основньгх ^методов общей теории дискретных групп.

Рассказывая о капском периоде жизни Пуанкаре, невозможно обойти молчанием одно весьма важное событие его личной жизни. По своему значению оно, безусловно, заслуживает того, чтобы ему посвятили больше внимания и места, но отсутствие у авторов достаточного количества документальных материалов, к сожалению, ограничивает их возможности. При всей своей занятости и углубленности в сложнейшие проблемы математики Пуанкаре сумел заинтересоваться одной прелестной молодой особой и в то же время привлечь ее внимание к себе. Посвятив свое высокое интеллектуальное горение фуксовым функциям, он отдал мадемуазель Полен д'Андеси благородный пыл своего сердца. 20 апреля 1881 года в Париже торжественно празднуется их свадьба, о чем он сообщает в своем письме Фуксу. Гейдель-бергский профессор отвечает ему длинным и любезным письмом, на этот раз на французском языке, в котором выражает свое искреннее поздравление молодой чете. Супруга Анри Пуанкаре приходилась внучкой Изидору Жоффруа Сент-Илеру, знаменитому французскому биологу, члену Академии наук.

Благодаря блестящему открытию фуксовых функций Пуанкаре в свои 27 лет приобрел столь большую известность в ученых кругах, что ему предлагают должность преподавателя на Факультете наук в Парижском университете. Семья Пуанкаре перебирается из нормандской столицы в столицу Франции. Снова Анри обосновывается в Латинском квартале и в октябре 1881 года приступает к исполнению своих новых обязанностей. Как привилегированное учебное заведение, Политехническая школа готовила своих воспитанников к государственной карьере, давая каждому из них шанс достигнуть высокой административной должности. Но Пуанкаре окончательно и бесповоротно порывает со своей прежней профессией и избирает научное поприще. Его шанс так и остался неиспользованным.

1 Zur Entschädigung(нем.) — для компенсации (возмещения).

2 Из “Фауста” Гёте, сцена XVI.

 

назад вперед
к оглавлению         на главную

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution