терминология оптики   оптика   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

РЕАЛЬНАЯ ФИЗИКА

Фотоэффект. Фотоны

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Генрихом Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Филиппом фон Ленардом в 1900 г. К этому времени уже был открыт электрон (Д. Томсон, 1897 г.), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света. Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 1.

Схема экспериментальной установки для изучения фотоэффекта
Рисунок 1. Схема экспериментальной установки для изучения фотоэффекта.

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U, полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ, и при неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения. На рис. 2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Зависимость силы фототока от приложенного напряжения
Рисунок 2. Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. Iн1 и Iн2 – токи насыщения, Uз – запирающий потенциал.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения Iн прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU|. Если напряжение на аноде меньше, чем –Uз, фототок прекращается. Измеряя Uз, можно определить максимальную кинетическую энергию фотоэлектронов:

 Фотоэффект. Фотоны

К удивлению ученых, величина Uз оказалась не зависящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты ν света (рис. 3).

Зависимость запирающего потенциала от частоты
Рисунок 3. Зависимость запирающего потенциала Uз от частоты ν падающего света.

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

  1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.
  2. Для каждого вещества существует так называемая красная граница фотоэффекта, то есть наименьшая частота νmin, при которой еще возможен внешний фотоэффект.
  3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
  4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям электрон при взаимодействии с электромагнитной световой волной должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода.

В этой модели невозможно было также понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока, пропорциональность максимальной кинетической энергии частоте света. Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности. Выход был найден на открытия в 1900 году Максом Планком квантованности, то есть дискретности, электромагнитного излучения, причем энергия каждого кванта определяется формулой Планка E = hν, где h – постоянная Планка.

Макс Планк в своей работе 1900 года "О нормальном спектре излучения" показал, что электромагнитная волна состоит из отдельных порций – квантов, впоследствии названных фотонами. При взаимодействии с веществом фотон целиком передает всю свою энергию hν одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A, зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

 Фотоэффект. Фотоны

Эту формула называется уравнением фотоэффекта. С помощью этого уравнения, являющегося комбинацией формулы Планка с классическими формулами кинетической энергии и энергии потенциального электрического поля электрона, можно объяснить закономерности внешнего фотоэффекта. Из этого уравнения следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока. Как следует из уравнения фотоэффекта, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала Uз от частоты ν (рис. 3), равен отношению постоянной Планка h к заряду электрона e:

 Фотоэффект. Фотоны

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены Р. Милликеном (1914 г.) и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода A:

 Фотоэффект. Фотоны

где c – скорость света, λкр – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10–19 Дж). В квантовой физике часто используется электрон-вольт в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон–вольтах в секунду, равно

h = 4,136·10–15 эВ·с.

Среди металлов наименьшей работой выхода обладают щелочные металлы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λкр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах, предназначенных для регистрации видимого света. Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов. Энергия фотонов равна

E = hν.

Фотон, будучи волной, движется в прозрачных физических средах с характеристической скоростью данной среды, а в вакууме (свободном от вещества космическом эфире) со скоростью c. Фотон не имеет массы, m = 0. Из общего соотношения, связывающего энергию, импульс и массу любой частицы,

E2 = m2c4 + p2c2,

следует, что фотон обладает импульсом

 Фотоэффект. Фотоны

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах. Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма, который часто превратно понимается как раздвоение логики (в релятивизме). На самом деле фотон есть квантованный вихрь эфира, распространяющийся в нем в виде поперечной волны. Он не является вещественной частицей, имеющей массу. Фотон, - а более широко, - электромагнитная волна любой частоты является процессом колебания основной вселенской физической среды - эфира. Его квантованность, дискретность есть лишь следствие сверхтекучести эфира. В других сверхтекучих средах или средах с низкой вязкостью, физики уже более ста лет наблюдают аналогичные квантово-волновые явления: фотоны и пр.

терминология оптики   оптика   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

Знаете ли Вы, что низкочастотные электромагнитные волны частотой менее 100 КГц коренным образом отличаются от более высоких частот падением скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тысяч кмилометров в секунду при 100 кГц до примерно 7 тыс км/с при 50 Гц.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution