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The recent spectral measurements made by O. Lummer and E. Pringsheim[1],
and even more notable those by H. Rubens and F. Kurlbaum[2], which together
con�rmed an earlier result obtained by H. Beckmann,[3] show that the law of
energy distribution in the normal spectrum, �rst derived by W. Wien from
molecular-kinetic considerations and later by me from the theory of electromag-
netic radiation, is not valid generally.

In any case the theory requires a correction, and I shall attempt in the fol-
lowing to accomplish this on the basis of the theory of electromagnetic radiation
which I developed. For this purpose it will be necessary �rst to �nd in the set
of conditions leading to Wien's energy distribution law that term which can be
changed; thereafter it will be a matter of removing this term from the set and
making an appropriate substitution for it.

In my last article[4] I showed that the physical foundations of the elec-
tromagnetic radiation theory, including the hypothesis of "natural radiation,"
withstand the most severe criticism; and since to my knowledge there are no
errors in the calculations, the principle persists that the law of energy distri-
bution in the normal spectrum is completely determined when one succeeds in
calculating the entropy S of an irradiated, monochromatic, vibrating resonator
as a function of its vibrational energy U . Since one then obtains, from the re-
lationship dS/dU = 1/q, the dependence of the energy U on the temperature
q, and since the energy is also related to the density of radiation at the corre-
sponding frequency by a simple relation,[5] one also obtains the dependence of
this density of radiation on the temperature. The normal energy distribution
is then the one in which the radiation densities of all di�erent frequencies have
the same temperature.

Consequently, the entire problem is reduced to determining S as a function
of U , and it is to this task that the most essential part of the following analysis
is devoted. In my �rst treatment of this subject I had expressed S, by de�ni-
tion, as a simple function of U without further foundation, and I was satis�ed
to show that this from of entropy meets all the requirements imposed on it by
thermodynamics. At that time I believed that this was the only possible expres-
sion and that consequently Wein's law, which follows from it, necessarily had
general validity. In a later, closer analysis,[6] however, it appeared to me that
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there must be other expressions which yield the same result, and that in any
case one needs another condition in order to be able to calculate S uniquely. I
believed I had found such a condition in the principle, which at the time seemed
to me perfectly plausible, that in an in�nitely small irreversible change in a sys-
tem, near thermal equilibrium, of N identical resonators in the same stationary
radiation �eld, the increase in the total entropy SN = NS with which it is
associated depends only on its total energy UN = NU and the changes in this
quantity, but not on the energy U of individual resonators. This theorem leads
again to Wien's energy distribution law. But since the latter is not con�rmed by
experience one is forced to conclude that even this principle cannot be generally
valid and thus must be eliminated from the theory.[7]

Thus another condition must now be introduced which will allow the cal-
culation of S, and to accomplish this it is necessary to look more deeply into
the meaning of the concept of entropy. Consideration of the untenability of
the hypothesis made formerly will help to orient our thoughts in the direction
indicated by the above discussion. In the following a method will be described
which yields a new, simpler expression for entropy and thus provides also a
new radiation equation which does not seem to con�ict with any facts so far
determined.

1 Calculations of the Entropy of a resonator as a

function of its energy

�1. Entropy depends on disorder and this disorder, according to the electro-
magnetic theory of radiation for the monochromatic vibrations of a resonator
when situated in a permanent stationary radiation �eld, depends on the irreg-
ularity with which it constantly changes its amplitude and phase, provided one
considers time intervals large compared to the time of one vibration but small
compared to the duration of a measurement. If amplitude and phase both re-
mained absolutely constant, which means completely homogeneous vibrations,
no entropy could exist and the vibrational energy would have to be completely
free to be converted into work. The constant energy U of a single stationary
vibrating resonator accordingly is to be taken as time average, or what is the
same thing, as a simultaneous average of the energies of a large number N of
identical resonators, situated in the same stationary radiation �eld, and which
are su�ciently separated so as not to in�uence each other directly. It is in this
sense that we shall refer to the average energy U of a single resonator. Then to
the total energy

UN = NU (1)

of such a system of N resonators there corresponds a certain total entropy

SN = NS (2)
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of the same system, where S represents the average entropy of a single resonator
and the entropy SN depends on the disorder with which the total energy UN is
distributed among the individual resonators.
�2. We now set the entropy SN of the system proportional to the logarithm of its
probability W , within an arbitrary additive constant, so that the N resonators
together have the energy EN :

SN = k log W + const. (3)

In my opinion this actually serves as a de�nition of the probability W , since
in the basic assumptions of electromagnetic theory there is no de�nite evidence
for such a probability. The suitability of this expression is evident from the
outset, in view of its simplicity and close connection with a theorem from kinetic
gas theory.[8]
�3. It is now a matter of �nding the probability W so that the N resonators to-
gether possess the vibrational energy UN . Moreover, it is necessary to interpret
UN not as a continuous, in�nitely divisible quantity, but as a discrete quantity
composed of an integral number of �nite equal parts. Let us call each such part
the energy element ε; consequently we must set

UN = Pε (4)

where P represents a large integer generally, while the value of e is yet
uncertain.

Now it is evident that any distribution of the P energy elements among
the N resonators can result only in a �nite, integral, de�nite number. Every
such form of distribution we call, after an expression used by L. Boltzmann
for a similar idea, a "complex." If one denotes the resonators by the numbers
1, 2, 3, ...N , and writes these side by side, and if one sets under each resonator
the number of energy elements assigned to it by some arbitrary distribution,
then one obtains for every complex a pattern of the following form:

1 2 3 4 5 6 7 8 9 10
7 38 11 0 9 2 20 4 4 5

Here we assume N = 10, P = 100. The number R of all possible complexes
is obviously equal to the number of arrangements that one can obtain in this
fashion for the lower row, for a given N and P . For the sake of clarity we
should note that two complexes must be considered di�erent if the corresponding
number patters contain the same numbers but in a di�erent order.

From combination theory one obtains the number of all possible complexes
as:

R =
N(N + 1)(N + 2) . . . (N + P − 1)

1 · 2 · 3 . . . P
=

(N + P − 1)!
(N − 1)!P !

Now according to Stirling's theorem, we have in the �rst approximation:

N ! = NN
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Consequently, the corresponding approximation is:

R =
(N + P )N+P

NN · PP

�4. The hypothesis which we want to establish as the basis for further calculation
proceeds as follows: in order for the N resonators to possess collectively the
vibrational energy UN , the probability W must be proportional to the number
R of all possible complexes formed by distribution of the energy UN among
the N resonators; or in other words, any given complex is just as probable as
any other. Whether this actually occurs in nature one can, in the last analysis,
prove only by experience. But should experience �nally decide in its favor it
will be possible to draw further conclusions from the validity of this hypothesis
about the particular nature of resonator vibrations; namely in the interpretation
put forth by J. v. Kries[9] regarding the character of the "original amplitudes,
comparable in magnitude but independent of each other." As the matter now
stands, further development along these lines would appear to be premature.
�5. According to the hypothesis introduced in connection with equation(3),
the entropy of the system of resonators under consideration is, after suitable
determination of the additive constant:

SN = k · log R
= k · [(N + P ) log (N + P ) − N log (N) − P log (P )] (5)

and by considering (4) and (1):

SN = kN ·
{(

1 +
U

ε

)
log

(
1 +

U

ε

)
−

(
U

ε

)
log

(
U

ε

)}
Thus, according to equation (2) the entropy S of a resonator as a function of
its energy U is given by:

S = k ·
{(

1 +
U

ε

)
log

(
1 +

U

ε

)
−

(
U

ε

)
log

(
U

ε

)}
(6)

2 Introduction of Wien's Displacement Law

�6. Next to Kircho�'s theorem of the proportionality of emissive and absorp-
tive power, the so-called displacement law, discovered by and named after W.
Wien,[10] which includes as a special case the Stefan-Boltzmann law of depen-
dence of total radiation on temperature, provides the most valuable contribution
to the �rmly established foundation of the theory of heat radiation, In the form
given by M. Thiesen[11] it reads as follows:

E · dλ = q5y(λ · q) · dλ

where λ is the wavelength , E · dλ represents the volume density of the "black-
body" radiation[12] within the spectral region l to λ+dλ , q represents temper-
ature and y(x) represents a certain function of the argument x only.
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�7. We now want to examine what Wien's displacement law states about the
dependence of the entropy S of our resonator on its energy U and its character-
istic period, particularly in the general case where the resonator is situated in
an arbitrary diathermic medium. For this purpose we next generalize Thiesen's
form of the law for the radiation in an arbitrary diathermic medium with the
velocity of light c. Since we do not have to consider the total radiation, but only
the monochromatic radiation, it becomes necessary in order to compare di�er-
ent diathermic media to introduce the frequency ν instead of the wavelength
λ.

Thus, let us denote by u · dν the volume density of the radiation energy
belonging to the spectral region ν to ν + dν; then we write: u · dν instead of
E · dλ; c/ν instead of λ, and c · dν/ν2 instead of dλ. From which we obtain:

u = θ5 c

ν2
· Ψ

(
c · θ
ν

)
Now according to the well-known Kircho�-Clausius law, the energy emitted
per unit time at the frequency ν and temperature q from a black surface in
a diathermic medium is inversely proportional to the square of the velocity of
propagation c2; hence the energy density u is inversely proportional to c3 and
we have:

u =
θ5

ν2c3
· f

(
θ

ν

)
where the constants associated with the function f are independent of c.

In place of this, if f represents a new function of a single argument, we can
write:

u =
ν3

c3
· f

(
θ

ν

)
(7)

and from this we see, among other things, that as is well known, the radiant
energy u ·λ3 at a given temperature and frequency is the same for all diathermic
media.
�8. In order to go from the energy density u to the energy U of a stationary
resonator situated in the radiation �eld and vibrating with the same frequency
ν, we use the relation expressed in equation (34) of my paper on irreversible
radiation processes[13]:

K =
n2

c2
U

(K is the intensity of a monochromatic linearly, polarized ray), which together
with the well-known equation:

u =
8pK

c

yields the relation:
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u =
8pn2

c3
U · f

(
θ

ν

)
(8)

From this and from equation (7) follows:

U = ν · f
(

θ

ν

)
where now c does not appear at all. In place of this we may also write:

θ = ν · f
(

U

ν

)
�9. Finally, we introduce the entropy S of the resonator by setting:

1
θ

=
dS

dU
(9)

We then obtain:
dS

dU
=

1
nu

· f
(

U

ν

)
and integrated:

S = f

(
U

ν

)
(10)

that is, the entropy of a resonator vibrating in an arbitrary diathermic medium
depends only on the variable U/n, containing besides this only universal con-
stants. This is the simplest form of Wien's displacement law known to me.
�10. If we apply Wien's displacement law in the latter form to equation (6) for
the entropy S, we then �nd that the energy element ε must be proportional to
the frequency ν, thus:

ε = hν

and consequently:

S = k ·
{(

1 +
U

hν

)
log

(
1 +

U

hν

)
−

(
U

hν

)
log

(
U

hν

)}
here h and k are universal constants.
By substitution into equation (9) one obtains:

1
θ = k

hν log
(
1 + hν

U

)
U = hν

exp (hν/kθ)−1

(11)

and from equation (8) there then follows the energy distribution law sought for:

u =
8πhν3

c3
· 1
ehν/kθ − 1

(12)
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or by introducing the substitutions given in �7, in terms of wavelength λ instead
of the frequency:

E =
8πch

λ5
· 1
ech/kλθ − 1

(13)

I plan to derive elsewhere the expressions for the intensity and entropy of radia-
tion progressing in a diathermic medium, as well as the theorem for the increase
of total entropy in nonstationary radiation processes.

3 Numerical Values

�11. The values of both universal constants h and k may be calculated rather
precisely with the aid of available measurements. F. Kurlbaum,[14] designating
the total energy radiating into air from 1 cm2 of a black body at temperature t
◦C in 1 sec by St, found that:

S100 − S0 = 0.0731 watt/cm2 = 7.31 · 105 erg/cm2sec

From this one can obtain the energy density of the total radiation energy in air
at the absolute temperature 1:

4 · 7.31 · 105

3 · 1010(3734 − 2734)
= 7.061 · 10−15 erg/cm3deg4

On the other hand, according to equation (12) the energy density of the total
radiant energy for q = 1 is:

u∗ =
∫ ∞

0

udν =
8πh

c3

∫ ∞

0

ν3dν

ehν/k − 1

=
8πh

c3

∫ ∞

0

ν3
(
e−hν/k + e−2hν/k + e−3hν/k + . . .

)
dν

and by termwise integration:

u∗ =
8πh

c3
· 6

(
k

h

)4 (
1 +

1
24

+
1
34

+
1
44

+ . . .

)

=
48πk4

c3h3
· 1.0823

If we set this equal to 7.061 · 1015, then, since c = 3 · 1010 cm/sec, we obtain:

k4

h3
= 1.1682 · 1015 (14)

�12. O. Lummer and E. Pringswim[15] determined the product λmq, where
λm is the wavelength of maximum energy in air at temperature 0, to be 2940
micron·degree. Thus, in absolute measure:

λm = 0.294 cm deg
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On the other hand, it follows from equation (13), when one sets the derivative
of E with respect to q equal to zero, thereby �nding λ = λm:(

1 − ch

5kλmθ

)
· ech/kλmθ = 1

and from this transcendental equation:

λmq =
ch

4.9651k

consequently:
h

k
=

4.9561 · 0.294
3 · 1010

= 4.866 · 1011

From this and from equation (14) the values for the universal constants become:

h = 6.55 · 10−27 erg sec (15)

k = 1.346 · 10−16 erg / deg (16)
These are the same number that I indicated in my earlier communication.
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