к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Термоэлектронный катод, теpмокатод

Термоэлектронный катод (теpмокатод) - катод электровакуумных и газоразрядных приборов, эмитирующий электроны при нагревании (см. Термоэлектронная эмиссия ).Осн. характеристики Т.к.: плотность эмиссионного тока насыщения jэ и её зависимость от температуры; рабочая темп-pa Траб, обычно рекомендуемая для Т.к. данного типа; работа выхода Ф; эффективность Т.к. h, равная отношению тока эмиссии к мощности, затрачиваемой на нагревание катода; срок службы. Чем меньше Ф, тем ниже Tраб, при к-рой достигается jэ, меньше скорость испарения активного вещества катода и, следовательно, больше его срок службы. Осн. типы Т.к.: металлические, полупроводниковые, металлопористые и боридные.

Металлические термоэлектронные катоды изготовляются из чистого металла или сплавов металлов. Это прямонакальные T. к., нагревающий их ток пропускается непосредственно через проволоку (спираль, ленту), эмитирующую электроны. Такие T. к. находят ограниченное применение.

Полупроводниковые Термоэлектронный катоды

К этому классу термоэлектронные катоды относятся в осн. оксидные. Это эффективные T. к. косвенного накала. Активным веществом в них являются оксиды металлов; в результате их прогревания (активирования), проводимого с целью повышения jэ, в объёме и на поверхности катода образуется избыток металла, обеспечивающий необходимую электропроводность T. к. и снижение Ф. Существуют два типа оксидных катодов - низко- и высокотемпературные. В н и з к о т е м п е р а т у р н ы х о к с и дн ы х Т.к., работающих при Tраб5019-1.jpg900-1300 К, используются смеси оксидов щёлочно-земельных металлов Ba, Sr и Ca. Из-за неустойчивости этих оксидов на воздухе их получают из исходных веществ-двойных или тройных карбонатов (BaSr)CO3, (BaSrCa)CO3. Последние наносятся на металлический керн, смонтированный вместе с подогревателем, и активируются прогреванием непосредственно в изготовляемом приборе при его откачке. При этом образуются оксиды металлов и одновременно нек-рое количество свободных атомов металлов. В в ы с о к о т е мп е р а т у р н ы х о к с и д н ы х к а т о д а х активным веществом служат оксиды Y, Th и др. Рабочие температуры таких Т.к. в зависимости от материала подложки (Та, W, Re) лежат в диапазоне Tраб5019-2.jpg1400-2000 К. Долговечность оксидных T. к. ограничивается постоянным испарением ок-сидного покрытия, а также образованием промежуточного слоя между металлической подложкой, на к-рую наносится активный слой, и покрытием.

М е т а л л о п о р и с т ы е Т.к. Недостатки оксидных катодов были устранены благодаря созданию T. к. с запасом активного эмиссионного вещества, названных металлопо-ристыми (р а с п р е д е л и т е л ь н ы м и, или д и с п е н с е р-н ы м и) катодами. Они представляют собой металлическую губку из тугоплавкого металла (W, Re, Mo), содержащую соединения активных материалов, преимущественно Ba. При нагревании выделяющийся из соединений Ba диффундирует к поверхности, покрывая её тонкой плёнкой металла, снижающей Ф. В процессе работы T. к. разрушающаяся вследствие испарения и воздействия остаточных газов плёнка возобновляется поступающим из пор Ba. Существует неск. типов металлопористых T. к. К а м е рн ы й или L-к а т о д представляет собой камеру, заполненную карбонатом Ba - Sr и закрытую вольфрамовой стенкой-губкой. При нагревании карбонат разлагается, выделяя Ba, к-рый пополняет его запас в губке и на её наружной поверхности, эмитирующей электроны. Осн. недостатком этой модификации катодов является длительное время обезгаживания и разложения карбонатов. Этот недостаток был устранён благодаря использованию др. эмиссионно-активных материалов-алюминатов и вольфраматов Ba, а также созданию др. модификаций металлопористых Т.к. - прессованных и пропитанных (импрегнированных). П р е с с о в а н н ы е м е т а л л о п о р и с т ы е Т.к. изготавливаются в виде таблеток или керамических трубок путём прессования смеси из порошков активных веществ (оксидов, алюминатов, вольфраматов Ba) и порошков тугоплавких металлов (W) или сплавов W с др. металлами, напр. с Re. П р о п и т а н н ы е T.к. получают пропитыванием вольфрамовой губки путём погружения её в расплав активного эмиссионного материала. Варьировались составы активных эмиссионных материалов (вольфраматы Ba и Ba - Ca, скандаты) и материалы губки (W, Ni, смеси W с Ir, Os). Лучшими модификациями металлопористых T. к., широко применяемыми на практике, являются катоды с алюминатом Ba - Ca: jэ5019-3.jpg4-10 А/см2 при Tраб5019-5.jpg 1370 К, срок службы-десятки тыс. часов. Металлопористые T. к. используются в электронно-лучевых трубках, приборах СВЧ-диапазона. Изучаются металлопористые T. к. с тонкими плёнками тугоплавких металлов на поверхности (Os, Ir, Ru, Pt). Лучшими свойствами обладают катоды с плёнкой Os.

Б о р и д н ы е Т.к. изготовляются из металлоподобных соединений типа MBn (M - металл); наиб. распространение получили T. к. из гексаборида лантана (LaB6). Высокая механическая прочность и устойчивость к электронной и ионной бомбардировкам позволяют использовать такие T. к. в режиме термополевой эмиссии при высокой напряжённости электрического поля (~10б В/см), когда значительная часть эмиссионного тока обусловлена автоэлектронной эмиссией. Такие Т.к. применяются в ускорителях, а также в вакуумных устройствах, в к-рых Т.к. должны работать в условиях "плохого" вакуума, не отравляясь и обеспечивая электронные токи большой плотности. Перспективным направлением в улучшении свойств T. к. из LaB6 является использование монокристаллов LaB6; так, с граней (100), (210) монокристалла снимаются большие токи, чем с поликристаллического LaB6.

Новым направлением в катодной электронике является разработка металлосплавных термоэлектронных катодов. Перспективными материалами для катодов этой серии являются сплавы благородных металлов (Pd, Pt, Ir) с редкоземельными (Ir с Ce и La).

В табл. приведены осн. параметры применяемых на практике T. к. (по данным разных авторов).

5019-6.jpg

Литература по термоэлектронным катодам, теpмокатодам

  1. Кудинцева Г. А. и др., Термоэлектронные катоды, M.- Л., 1966;
  2. Никонов Б. П., Оксидный катод, M., 1979;
  3. Cronin J. L., Modern dispenser cathodes, "Proc. IEE - I", 1981, v. 128, pt 1, № 1, p. 19.

Б. С. Кульварская

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 18.10.2019 - 14:00: ЭКОЛОГИЯ - Ecology -> Биохимия мозга от проф. С.В. Савельева и не только - Карим_Хайдаров.
18.10.2019 - 07:39: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
18.10.2019 - 07:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
18.10.2019 - 07:26: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
17.10.2019 - 18:29: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Ядерные эксперименты - Карим_Хайдаров.
17.10.2019 - 06:07: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
17.10.2019 - 06:05: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> КОМПЬЮТЕРНО-СЕТЕВАЯ БЕЗОПАСНОСТЬ ДЛЯ ВСЕХ - Карим_Хайдаров.
17.10.2019 - 06:01: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
16.10.2019 - 19:24: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
14.10.2019 - 03:09: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Марины Мелиховой - Карим_Хайдаров.
13.10.2019 - 18:09: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
13.10.2019 - 08:05: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Декларация Академической Свободы - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution