к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Математическая теория ползучести

Математическая теория ползучести - раздел механики сплошных сред, в к-ром изучают процессы медленного деформирования (течения) твёрдых тел под действием пост, напряжения (или нагрузки). В силу различия физ. механизмов, приводящих к возникновению временных эффектов, единой П. т. не существует. Наиб, развитие получили варианты П. т., описывающие поведение наиб, распространённых конст-рукц. материалов: металлов, пластмасс, композитов, грунтов, бетона. Осн. задача П. т.- формулировка таких матем. зависимостей между деформацией ползучести (или её скоростью) и параметрами, характеризующими состояние материала (механич. напряжения, темп-pa, повреждённость и др.), к-рые бы достаточно полно отражали осн. наблюдаемые в экспериментах свойства. К П. т. непосредственно примыкают теории т. н. длит. прочности, описывающие разрушение материалов при выдержке в условиях постоянной или слабо меняющейся нагрузки.

Механич. характеристики ползучести и длит. прочности конструкц. материалов обычно определяют в опытах на растяжение или сжатие цилиндрич. образцов (одноосное напряжённое состояние) либо путём испытаний трубчатых или плоских образцов при разд. комбинациях нагрузок (сложное напряжённое состояние). Длительность испытаний зависит как от уровня нагрузок, так и от задач использования данного материала в конкретных конструкциях. Она может колебаться от неск. минут (для решения технол. задач обработки металлов, непрерывной разливки, ракетной техники) до сотен тысяч часов (стационарные турбины, строит. конструкции).

Наиб. распространение получили два подхода к построению П. т. В первом в качестве осн. соотношения принимается4001-164.jpgур-ние состояния в виде где r - деформация ползучести, 4001-165.jpg- напряжение, Т - темп-pa, 4001-166.jpg- т. н. параметры состояния, для к-рых записывается система кинетич. ур-ний вида

4001-167.jpg где коэф. 4001-168.jpgсами могут быть функциями4001-169.jpg 4001-170.jpg Задавая конкретные виды функций4001-171.jpg и 4001-172.jpg можно получить все известные, т. н. техн. П. т. Так, если принять, что параметр4001-173.jpgполучим теорию течения, а если ограничиться одним ур-нием (1), то теорию упрочнения. Вводя параметр повреждённости w (под к-рым понимается обобщённая мера микротрещин), получим соотношения вида

4001-174.jpg к-рые позволяют описать как процесс ползучести, так и длит. разрушение (обычно для сплошного, неповреждённого материала принимается4001-175.jpg= 0, а условие разрушения - в виде 4001-176.jpg = 1). Введение двух параметров повреждённости4001-177.jpg и 4001-178.jpgпозволяет описать наиб. характерные эффекты длит. прочности. Соотношения (1) и (2) позволяют учесть все осн. участки кривых простой ползучести (когда испытания проводятся при пост. напряжении). Кроме того, в них могут быть учтены и такие эффекты, как скачкообразное изменение скорости ползучести при мгновенных догрузках и разгрузках и эффект последействия. Во втором подходе принимается зависимость вида 4001-179.jpg где под F понимается нек-рый функционал по времени г. В частном случае, когда он может быть записан в виде

4001-180.jpg

получаем обычную теорию наследственности. Величина4001-181.jpgт. н. ядро последействия, характеризует, насколько в момент времени t ощущается влияние (последействие) на деформацию напряжения, к-рое действовало в более ранний момент времени4001-182.jpg Т. к. напряжение действует и в др. моменты времени, то суммарное последействие учитывается интегрированием. Если ядро К зависит только от разности4001-183.jpgто имеем дело с нестареющим материалом, а если4001-184.jpgявляется линейной функцией4001-185.jpgто получается линейная теория наследственности. Когда К является экспоненциальной функцией от4001-186.jpgполучаем известные модели вязкоупругих сред. В более общем случае F может быть представлено в виде ряда кратных интегралов по времени. Тогда получаем соотношения общей нелинейной теории вязкоупругости.

Переход к сложному напряжённому состоянию осуществляется обычно принятием одной из двух гипотез для деформаций ползучести: в первом случае принимается, что тензор деформаций ползучести4001-187.jpgпропорционален девиатору тензора напряжений 4001-188.jpg=4001-189.jpg во втором принимается гипотеза о пропорциональности тензора скоростей деформаций ползучести 4001-190.jpgтому же девиатору 4001-191.jpg Первая - деформац. вариант, вторая - теория течения для сложного напряжённого состояния. Параметр4001-192.jpgопределяется как отношение соответствующих инвариантов тензоров деформаций ползучести и напряжений, для определения к-рых принимаются системы (1) и (2), куда в качестве параметров могут войти произвольные инварианты тензоров напряжений и деформаций.

Математическая теория ползучести используется для анализа напряжённо-деформированного состояния и времени работоспособности элементов конструкций, материал к-рых обладает свойствами ползучести и длит. прочности. Соотношения (1), (2) дополняют систему ур-ний равновесия и совместности до полной. В условиях ползучести при пост. внеш. воздействиях может со временем произойти потеря несущей способности отд. элементов конструкций и конструкции в целом. Это относится, в частности, к потере устойчивости элементов типа арок и оболочек, где возможна потеря устойчивости при нагрузках, существенно меньших, чем вызывающие мгновенную потерю устойчивости при нагружении. Важное значение имеют расчёты длит. прочности, когда возможно наступление мгновенного разрушения при длит. эксплуатации в условиях стационарного режима нагру-жения. П. т. позволяет найти оптим. режимы ряда технол. процессов высокотемпературной обработки металлов, изготовления композитных материалов и оценить временные процессы при деформации грунтов, ледников и др. природных сред.

Литература по математической теории ползучести

  1. Работнов Ю. Н., Ползучесть элементов конструкций, М., 1966;
  2. его же, Элементы наследственной механики твердых тел, М., 1977;
  3. Закономерности ползучести и длительной прочности. Справочник, под ред. С. А. Шестерикова, М., 1983;
  4. Малинин H. H., Ползучесть в обработке металлов, М., 1986.

С. А. Шестериков

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution