к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Лазерный микропроектор (лазерный проекционный микроскоп)

Лазерный микропроектор (лазерный проекционный микроскоп) - проекционный микроскоп, в к-ром для увеличения яркости получаемых изображений используется усилитель яркости (УЯ), действующий на основе стимулированного (вынужденного) излучения. Стимулированное излучение повторяет все свойства вынуждающего, в т. ч. фазу, поляризацию, поэтому УЯ на его основе, не включающий никаких преобразований световых полей, можно ставить в любое место оптич. системы на пути распространяющихся в ней пучков света. При этом возникает только один неустранимый источник помех - собственные шумы квантового усилителя.

Применение УЯ позволяет радикально решить одну из наиб. сложных для всех проекционных систем проблем - проблему проекции с большим увеличением, к-рая заключается в следующем. Для рассмотрения изображения на экране нужно обеспечить определённый уровень освещения. При этом весь световой поток, приходящий на экран, в обычном проекторе должен пройти через микрообъект или отразиться от него. Это означает, что при заданном освещении экрана плотность мощности излучения на объекте, пропорциональная квадрату линейного увеличения, при очень большом увеличении приводит к перегреву объекта или даже к его разрушению. Так, напр., линейное увеличение 2544-92.jpg103 уже труднодостижимо.

В простейшей схеме Л. м. (рис.) усиливающий элемент У (напр., газоразрядная трубка с парами меди) служит одновременно и для усиления яркости и для освещения объекта. Спонтанное излучение, усиленное в усилителе, через объектив Л1 освещает изображаемый объект, расположенный в предметной плоскости П1. Свет, отражённый от объекта и рассеянный на нём, снова проходит через объектив Л1 и затем усилитель У.

2544-93.jpg

В результате в плоскости П2 образуется увеличенное и усиленное по яркости промежуточное изображение объекта, к-рое через проекционный объектив Л2 переносится на экран Э. Возможны и др. схемы, в частности работающие "на просвет". В этом случае за объектом можно поставить зеркало 3, возвращающее свет на объект. Применяются также схемы с освещением от отд. лазерного источника.

Осн. элемент Л. м.- усилитель яркости, к-рый уже давно и широко используется в лазерах и представляет там собой к--л. активную среду, помещённую в оптич. резонатор. Пучок света, многократно пробегая между зеркалами, усиливается до тех пор, пока не наступает насыщение усиливающей среды. Структура выходного пучка лазера полностью определяется резонатором; обычно стараются ограничить число генерируемых мод до одной с предельно малой дифракционной расходимостью. В оптических же приборах, в т. ч. в Л. м., обычно требуется передать большой объём информации, заложенный в распределении амплитуд и фаз по полю зрения. Т. о., пучки света, распространяющиеся в оптич. системе, должны иметь значит. размеры. Чтобы пропустить такие пучки, УЯ должен иметь достаточную угл. апертуру.

Поле зрения оптич. системы ограничивается размерами УЯ, а разрешающая способность - свойствами применяемого микрообъектива. Если разрешение объектива ограничено только дифракцией, то число разрешаемых элементов на линейном размере поля зрения 2544-94.jpg , где d0 - диаметр объектива, dy - диаметр усиливающего элемента, 2544-95.jpg - длина волны, L - расстояние от объектива до дальнего торца усиливающего элемента. Из этого соотношения видно, что для передачи достаточно большого объёма оптич. информации усиливающий элемент должен иметь достаточно большой диаметр и не быть слишком длинным (что эквивалентно ограничению числа проходов через среду).

Применение усилителя имеет смысл, если он даёт значит. усиление. При этом длина усиливающей среды практически всегда ограничена. При таких условиях нужны коэф. усиления порядка 0,1-1,0 на см длины усиливающей среды. Кроме того, усиливающий элемент должен быть оптически однородным и не вносить заметных искажений, а также обеспечивать на выходе достаточно большую мощность. А для этого УЯ должен работать в режиме, близком к насыщению, когда стимулированное излучение уносит б. ч. энергии, запасённой в активной среде. Удовлетворить всем этим требованиям оказалось возможным далеко не с любой активной средой. Наиб. удобными здесь оказались газовые лазеры, т. к. их среда из-за малой оптич. плотности не вносит заметных искажений даже при значит. нагреве в процессе работы.

Практически Л. м. удалось построить только после появления импульсных лазеров на парах металлов. В 80-е гг. в качестве УЯ в основном используется усиливающий элемент лазера па парах меди, обеспечивающий усиление на двух линиях с2544-96.jpg=510,6 нм и 578,2 нм. С ним удаётся получать эфф. усиление за один проход 2544-97.jpg 10*. При значит. увеличении входного сигнала усилитель насыщается, и усиление падает. Это приводит к появлению ряда особенностей, не свойственных обычным оптич. системам. Так, напр., при значит. насыщении световая мощность на выходе системы весьма слабо зависит от входного сигнала, а значит, и от светосилы системы. Имеются и др. особенности, связанные с возникновением разл. нелинейных эффектов в усилителях при больших мощностях входного сигнала.

Большое усиление и высокий уровень выходной ср. мощности УЯ на нарах меди позволил получать изображения микрообъектов с линейным увеличением 2544-98.jpg 104 и на экранах размерами 10-20 м2, что недоступно для обычных микропроекторов.

Особый интерес представляет возможность полупения усиленных по яркости цветных изображений. Для этого необходимо иметь УЯ, как минимум, для трёх основных цветов: красного, зелёного и синего. Для зелёной и красной областей спектра можно применять уже имеющиеся УЯ на парах меди и золота, а для синей области спектра ещё нужно такой усилитель создать.

Литература по лазерным микропроекторам (лазерным проекционным микроскопам)

  1. Петраш Г. Г., Казарян М. А., Оптические системы с усилителями яркости, "Природа", 1979, № 4, с. 54;
  2. Петраш Г.Г., Усилители яркости для оптических приборов. "Вестн. АН СССР". 1982, № 2, с. 66.

Г. Г. Петраш

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution