к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

РЕАЛЬНАЯ ФИЗИКА

Глоссарий по физике

А   Б   В   Г   Д   Е   Ж   З   И   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Э   Ю   Я  

Атмосферное электричество

  1. Электрическое поле атмосферы
  2. Электропроводность атмосферы
  3. Электрический ток в атмосфере
  4. "Генераторы" атмосферного электричества
  5. Молнии
  6. Огни святого Эльма
  7. Литература по атмосферному электричеству

Атмосферное электричество -

  1. совокупность электрических явлений и процессов в атмосфере.
  2. Раздел геофизики, изучающий электрич. явления и процессы в атмосфере, её электрические свойства и характеристики.

Электрическое поле атмосферы

В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрич. поле. Атмосферное электричество данного района зависит от глобальных и локальных факторов. Районы, где действие первых преобладает, рассматриваются как зоны "хорошей", или ненарушенной, погоды. В этих зонах отсутствуют значит. скопления аэрозолей и источники сильной ионизации. При преобладании локальных факторов говорят о зонах нарушенной погоды (районах гроз, пыльных бурь, осадков и др.).

Исследования в зонах "хорошей" погоды показали, что у поверхности Земли существует стационарное электрич. поле напряжённостью E, в ср. равной ок. 130 В/м. Земля при этом имеет отрицат. заряд ок. -3*105 Кл, а атмосфера в целом заряжена положительно.


111998-68.jpg

Рис. 1. Ход напряжённости электрического поля E с высотой HB зонах "хорошей" погоды. 1 - в чистой атмосфере (океан, арктические районы и т. д.); 2 - над континентами.

E имеет наиб. значения в средних широтах, а к полюсам и экватору убывает. С высотой E уменьшается и на высоте 10 км не превышает неск. В/м. Только вблизи поверхности Земли в слое перемешивания толщиной 300-3000 м, где скапливаются аэрозоли, E может с высотой возрастать. Выше слоя перемешивания E убывает с высотой по экспоненц. закону (рис. 1). Разность потенциалов между Землёй и ионосферой составляет 200-250 кВ.

111998-69.jpg

Рис. 2. Суточный ход унитарной вариации напряженности по среднему Гринвическому времени (с. г в.) электрического поля над океанами (1), в полярных областях (2) и суточный ход площади, занятой грозами (3).

E меняется также во времени: наряду с локальными суточными и годовыми вариациями E отмечаются синхронные для всех пунктов суточные (рис. 2, кривые 1 и 2) и годовые вариации E - т. н. унитарные вариации, к-рые связаны с изменением электрич. заряда Земли в целом, тогда как локальные - с изменениями величины и распределения по высоте объемных электрич. зарядов в атмосфере в данном районе.

Электропроводность атмосферы

Электрическое состояние атмосферы в значительной степени определяется её электропроводностью111998-70.jpg, к-рая очень мала [у поверхности Земли в ср. 111998-71.jpg ]. В слое перемешивания111998-72.jpg незначительно увеличивается с высотой, а выше растёт примерно по экспоненциальному закону, достигая на высоте 10 км значения 111998-73.jpg .111998-74.jpgсоздаётся ионами и равна111998-75.jpg, где е - элементарный заряд, 111998-76.jpg - концентрация ионов с подвижностью 111998-77.jpg. Осн. вклад в111998-78.jpg вносят лёгкие ионы с 111998-79.jpg м2/с*В [у поверхности Земли111998-80.jpg111998-81.jpg]. Средние ионы с 111998-82.jpg м2/с*В и тяжёлые с 111998-83.jpg м2/с*В, образующиеся обычно при захвате лёгких ионов тяжёлыми частицами, на величину111998-84.jpg заметно не влияют. Концентрация лёгких ионов возрастает с увеличением интенсивности ионизации q и уменьшается с увеличением концентрации частиц в атмосфере N. Измерения111998-85.jpg или (и) концентрации ионов позволяют определить ничтожные кол-ва аэрозольных примесей в атмосфере.

Основными ионизаторами атмосферы являются:

  1. космические лучи, действующие во всей толще атмосферы;
  2. излучение радиоактивных веществ, находящихся в земле и воздухе; ионизирующее действие первой компоненты круто падает с высотой, вторая действует до высоты в неск. км;
  3. УФ- и корпускулярное излучение Солнца, ионизирующее действие которого проявляется на высотах более 50-60 км.

У поверхности земли, не покрытой снегом, в ср. 111998-86.jpg20 ион/см3, на высоте 10 км111998-87.jpg10 ион/см3 с; с высоты в неск. десятков км q растёт. С др. стороны, N убывает с высотой, причём в слое перемешивания скорость убывания мала. Комбинация обоих факторов в сочетании с увеличением подвижности ионов при уменьшении плотности воздуха создаёт наблюдаемые характеристики 111998-88.jpg и вертик. ход E.

Электрический ток в атмосфере

Под влиянием E в атмосфере к Земле течёт вертик. ток проводимости плотностью 111998-89.jpg со средней плотностью ок. 111998-90.jpg. На всю поверхность Земли течёт ток ок. 1800 А.111998-91.jpg относительно постоянна по высоте, наиб. отклонения от постоянства 111998-92.jpg испытывает в слое перемешивания. В атмосфере текут также токи конвективного переноса объёмных зарядов и токи диффузии. В слое перемешивания плотность этих токов сравнима с iп. T. к. в стационарных условиях суммарная плотность тока не должна меняться с высотой, то в слое перемешивания сумма плотностей всех трёх токов равна плотности тока проводимости на больших высотах. Время, в течение к-рого заряд Земли в отсутствие перезарядки за счёт токов проводимости атмосферы уменьшился бы до 111998-93.jpg0,37 от своего первоначального значения, 111998-94.jpg 500 с. Однако заряд Земли в ср. не меняется за счёт существования атмосферно-электрич. "генераторов", заряжающих Землю.

Вблизи поверхности земли, где поток положит. ионов, текущих под действием E, не компенсируется встречным потоком отрицат. ионов, накапливается объёмный положит. электрич. заряд; этот - электродный - эффект существенно влияет на характеристики атмосферного электричества в приземном слое (рис. 1, кривая 2). Над морем, где запылённость уменьшена, а земные источники ионизации отсутствуют, глобальные факторы нередко преобладают над локальными (рис. 2, кривая 1). Аналогично при появлении снежного покрова становится заметнее влияние глобальных факторов (рис. 2, кривая 2). Антропогенная деятельность приводит к заметным изменениям локальных атмосферно-электрич. характеристик, сказываясь на их вековом ходе. С одной стороны, увеличение запылённости атмосферы привело к уменьшению 111998-95.jpg и соответствующему возрастанию E в слое перемешивания. Даже в центре Атлантики проводимость за 60 лет (1910-70) уменьшилась в 2 раза.

111998-96.jpg

Рис. 3. Вековой ход E (1111998-97.jpg(г) в Ташкенте. На фоне роста E, связанного с индустриальными загрязнениями, выделяется её уменьшение в период испытаний ядерного оружия (1945, 1958- 1959 и 1963).

С другой стороны, испытания атомных бомб, увеличив ионизацию атмосферы, привели к увеличению111998-98.jpgи уменьшению E (рис. 3). В дальнейшем можно ожидать ещё большего влияния антропогенной деятельности на атмосферно-электрич. характеристики, даже в глобальных масштабах.

"Генераторы" атмосферного электричества

В зонах нарушенной погоды пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым промышленных источников и т. д. являются "генераторами" атмосферного электричества. Электризация при почти всех перечисленных явлениях может проявляться весьма бурно: извержение вулканов, песчаные бури, торнадо приводят к возникновению грозовых явлений, даже метели создают иногда молнии; и всё же наибольший вклад в электризацию атмосферы вносят облака и осадки. По мере укрупнения частиц облаков, увеличения их толщины, усиления осадков из них растёт их электризация.

В слоистых и слоисто-кучевых облаках плотность объёмных зарядов 111998-99.jpg Кл/км3 (что примерно в 10 раз превышает их плотность в чистой атмосфере), E=100-300 В/м, на отдельных облачных капельках находится заряд Q=10-100 е. Наиб. часто эти облака заряжены в верхней части положительно, в нижней - отрицательно. В слоисто-дождевых облаках все эти величины больше в неск. раз. Заряды капель осадков доходят до Q=105-106 е. Плотность токов этих осадков на Землю 111998-100.jpg=5*10-12-10-11 А/м2 в наших широтах и возрастает к экватору. В кучево-дождевых облаках с ливнем и грозой соотв. средние значения 111998-101.jpg=(0,3-10)*10-9 Кл/м3 и (3-30)*10-9 Кл/м3, a E=(1-5)*104 В/м и Е=(5-2O)*104 В/м, Q=100-500 е, Q=106-107е. В зонах экстремумов напряжённость поля и плотность объёмных зарядов могут на порядок величины и более превосходить ср. значения. По-видимому, в этих зонах и зарождаются молнии. Из ливневых облаков 111998-102.jpg= 10-10-10-9 А/м2, из грозовых 111998-103.jpg =10-9-10-8 А/м2. Полный ток, текущий на землю от одного грозового облака, равен в наших широтах ок. 111998-104.jpg=0,01-0,1 А, а ближе к экватору 111998-105.jpg=0,5-1А. Токи, текущие в этих облаках, в 10-100 раз больше токов, притекающих к земле.

Электропроводность во всех видах облаков, кроме грозовых, мала, она в неск. раз (2-10) меньше проводимости чистой атмосферы на той же высоте. Турбулентное перемешивание в облаках слоистых форм невелико, поэтому даже слабые процессы электризации, действующие в этих облаках, могут создать заметные электрич. эффекты. Эфф. проводимость, создаваемая электрич. проводимостью и турбулентностью в грозовых облаках, в 10-100 раз выше, чем в окружающей атмосфере, поэтому гроза в электрич. отношении подобна короткозамкнутому генератору. Электрич. поле Земли и ток Земля - атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды.

Долгое время считалось, что ок. 1800 гроз, в ср. сосуществующих одноврем. на Земле, дают ток Ir N111998-106.jpg2000 А (где N - число гроз), компенсирующий ток потери 111998-107.jpg отрицат. заряда Земли за счёт токов111998-108.jpg в зонах "хорошей" погоды, и что колебания грозовой активности во времени обусловливают наблюдаемые унитарные вариации. В действительности существует близкое подобие суточного хода площади, занятой грозами (рис. 2, кривая 3), и унитарной вариации (рис. 2, кривые 1 и 2). Однако выяснилось, что ток гроз заметно меньше указанного и что унитарные вариации связаны также с облаками слоистых форм и с процессами конвекции в атмосфере по всей поверхности Земли.

Молнии

Линейные молнии, генерируемые облаками, являются разновидностью искрового разряда, возникающего в отсутствие электродов в массе заряженных и хорошо изолированных друг от друга частиц (ср. расстояние между частицами облаков на два порядка величины превосходит их размеры). Выделяют два класса линейных молний: ударяющих в землю - "наземных" и внутриоблачных. При ср. длине молниевых разрядов в неск. км отмечаются внутриоблачные молнии, доходящие до 50 км и даже 150 км. Токи наземных молний при ср. значениях пиковых величин 111998-109.jpg 20 кА иногда достигают 111998-110.jpg500 кА. Во внутриоблачных разрядах эти токи меньше примерно на порядок величины.

Разряды молний сопровождаются электромагнитным излучением (атмосфериками)в широком спектре частот. Помимо линейных наблюдаются чёточная молния (как бы цепь светящихся пятен - чёток, отделённых тёмными промежутками) и шаровые молнии. Последние представляют собой светящиеся образования, нередко шаровой формы, со ср. диам. 10-20 см, с уд. плотностью, близкой к плотности воздуха, продолжительностью жизни от неск. секунд до десятков секунд и уд. энергией, доходящей до 106-107 Дж/г. Шаровые молнии даже вне грозовых облаков встречаются в облаках в 100 раз чаще, чем вблизи земли. Отмечались шаровые молнии, возникавшие в экранированных объёмах. Удовлетворительной теории происхождения шаровой молнии пока нет.

Воздействуя на облака, можно заметно менять их электрич. состояние (рис. 4), меняя условия электризации частиц в них.

111998-111.jpg 111998-112.jpg

Рис. 4. Напряжённость электрического поля E над мощным кучевым облаком до (а) и через 5 мин после (б) воздействия сухой углекислотой.

Быстро вводя в облака с сильными электрич. полями проводники (так чтобы не возникали экранирующие объёмные заряды), особенно заряженные, можно вызвать искусств. молнию. В ряде случаев электрически заряженные самолёты вызывали такие разряды.

Огни святого Эльма

Когда у поверхности Земли E превышает 500-1000 В/м, начинается электрич. разряд с острых, вытянутых предметов (травы, деревьев, линий электропередач, мачт, труб и т. д.), сопровождаемый характерным шумом; при дальнейшем усилении поля разряд становится видимым, иногда довольно ярким, с переходом в коронную форму. Огни электрич. короны в атмосфере часто наз. огнями св. Эльма, они особенно сильны в горах и на море. На очень высоких сооружениях (телевиз. мачты и т. п.) ток короны может превышать 10 мА. При полёте самолёта в облаках нередко происходит его заряжение благодаря контактным процессам и появление на заострённых концах токов короны, к-рые могут превышать 10 мА при потенциалах >106 В, создавая существ. помехи радиоприёму.

Исследования атмосферного электричества позволяют выяснить природу электрич. процессов в атмосфере, в частности причины глобальных вариаций электрич. полей в ней, предсказать последствия антропогенной деятельности на электрич. состояние атмосферы. Данные об унитарных вариациях электрич. поля могут стать основой для решения многих проблем существования и механизмов солнечно-тропосферных связей. Сведения об электричестве атмосферы позволяют оценить биол. влияние его факторов, снизить вредное, а иногда и опасное воздействие на линии электропередач, связи, открытые разработки, авиацию, высотные сооружения и т. д.

Литература по атмосферному электричеству

  1. Имянитов И. M., Чубаринa E. В. Электричество свободной атмосферы, Л., 1965;
  2. Имянитов И. M., Чубаринa E. В. Шварц Я. M., Электричество облаков, Л., 1971;
  3. Юман M. Молния, пер. с англ., M., 1972;
  4. Чалмерс Дж. А. Атмосферное электричество, пер. с англ., Л., 1974;
  5. Мучник В. M. Физика грозы, Л., 1974;
  6. Мучник В. M. Фишман Б. E., Электризация грубодисперсных аэрозолей в атмосфере. Л., 1982;
  7. Israel H. Atmospheric electricity, 2 ed., v. 1-2, Jerusalem, 1970-73;
  8. Lightning, ed. by R. H. Golde, v. 1-2, L.- N.Y., 1977.

И. М. Имянитов

к библиотеке   к оглавлению   FAQ по эфирной физике   ТОЭЭ   ТЭЦ   ТПОИ   ТИ  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 18.11.2019 - 19:10: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
16.11.2019 - 16:57: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
16.11.2019 - 16:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Марины Мелиховой - Карим_Хайдаров.
16.11.2019 - 12:16: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Игоря Кулькова - Карим_Хайдаров.
16.11.2019 - 07:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
15.11.2019 - 06:45: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
14.11.2019 - 12:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
13.11.2019 - 19:20: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
12.11.2019 - 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Бориса Сергеевича Миронова - Карим_Хайдаров.
12.11.2019 - 11:49: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Веры Лесиной - Карим_Хайдаров.
10.11.2019 - 23:14: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Кирилла Мямлина - Карим_Хайдаров.
05.11.2019 - 21:56: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Декларация Академической Свободы - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution