к библиотеке   Архитектура IBMPC   ИСиТК   ОИС   ОСВМ   визуальные среды - 4GL   технологии программирования

Архитектура IBM-совместимых ПК

Накопители на жестких магнитных дисках

Накопитель на жестком магнитном диске (НЖМД, HDD,) содержит:

- пакет дисков,

- блок головок чтения/записи,

- привод головок (позиционер),

- плату электроники и интерфейса.

Диски и головки.

Особенность конструкции HDD в том, что диски, головки и позиционер помещены в герметичный бокс, называемый HDA (Head Disk Assembly - сборка жесткого диска) и встроенная в него система циркуляции воздуха содержит наружный и внутренний фильтры, защищающие диски и головки от пыли. Во время работы, НЖМД очень чувствительны к тряске и ударам: микро-аварии головок (кратковременные падения головок на поверхность диска) приводят к неустранимому повреждению магнитного покрытия пластин дисков. По этим причинам разборка HDD, без повреждений накопителя, в неспециализированных условиях практически невозможна.

Воздушная подушка, возникающая при вращении дисков, благодаря аэродинамической форме держателей головок, держит головки над поверхностью дисков на высоте 2-5 мкм, т. е. головки не находятся в контакте с диском, что, вместе с защитой от пыли, позволяет использовать плотность записи в 20 - 30 раз большую, чем на дискетах.

Головки НЖМД по технологии их изготовления могут быть композитными, ферритовыми или тонкопленочными. Первые - тяжелее, обеспечивают зазор между головками и поверхностями дисков в 10-20 микродюймов, сравнительно дешевы, позволяют достичь плотности записи в 1500 TPI. Тонкопленочные - используют специальный полупроводниковый кристалл; они легче, допускают зазор до 6 микродюймов и позволяют достичь плотности записи до 2000 TPI и больше.

Позиционер.

Позиционеры в НЖМД ранее использовались двух типов: с шаговым двигателем (ШД) и с соленоидным приводом (СП), последний называется также позиционером с подвижной катушкой.

Сравнительные характеристики дисководов с шаговым и соленоидным приводами приведены в таблице 1.7.

Таблица 1.7. Сравнительные характеристики дисководов с шаговым и соленоидным приводами.

ПАРАМЕТР ШД СП

скорость позиционирования малая высокая
чувствительность к темпе-
ратурным изменениям высокая нет
чувствительность к ориен-
тации дисковода высокая нет
автопарковка головок нет есть
обслуживание периодическое нет
надежность малая хорошая
сложность малая высокая
стоимость низкая высокая.

Система с шаговым двигателем - система "открытого управления": сколько выдано сигналов ШАГ, столько и выполнено перемещений головок по цилиндрам. Считается, что головки автоматически точно устанавливаются на дорожки, но, при изменениях температуры, диски сжимаются или расширяются, поэтому позиционирование получается не вполне точным, следовательно, чтение - не вполне устойчивым, особенно при включении холодной системы. В настоящее время жесткие диски с шаговым двигателем не выпускаются и их можно встретить только в очень старых компьютерах типа IBM-286.

Соленоидный привод, вследствие существенных преимуществ перед приводом с ШД, что хорошо видно из приведенной выше таблицы 1.7, начал применяется в накопителях, емкостью более 100 Мбайт и используется во всех современных жестких дисках.

Накопитель с СП имеет специальный сервопривод, следящий за тем, чтобы головка устанавливалась точно на цилиндр. Для этого одна из поверхностей пакета дисков (служебная) содержит специальную информацию, записанную уже на заводе-изготовителе, и не участвует в запоминании данных, не форматируется и не может быть восстановлена после повреждений. Эта поверхность называется DSS (Dedicaded-Servo-Surface) и содержит также индексные метки, соответствующие цилиндрам и секторам диска.

В некоторых типах дисков, сервоинформация пишется в процессе форматирования просто между дорожками. Дисководы с выделенной поверхностью - более быстродействующие и позволяют большие плотности TPI, а с сервоинформацией, встроенной между информационными дорожками имеют большую надежность хранения информации в условиях колебаний температуры, когда взаимные размеры служебного и рабочих дисков могут изменяться.

Соленоидная система привода - это система "с замкнутой петлей управления". Сервосистема, имея 100% отрицательную обратную связь, постоянно следит за положением головок относительно дорожек и корректирует его в процессе работы.

Парковка головок дисководов с соленоидным приводом - пружинная, а дисководов с ШД электрическая, что, в последнем случае, требует автономных источников тока (накопительных емкостей) питания привода для парковки головок при нештатных отключениях питания.

Плата электроники.

Плата электроники, называемая иногда интерфейсной платой, содержит:

1) схемы управления шпиндельным двигателем,

2) схемы управления позиционером,

3) тракт чтения информации с диска,

4) тракт записи информации на диск,

5) элементы конфигурирования дисковода,

6) формирователи сигналов от датчиков ИНДЕКС, TRACK-0,

7) схемы сопряжения электроники диска с интерфейсом дисковой системы по уровням, логике и т.д.,

8) разъемы для подключения компонент накопителя, интерфейса связи с адаптером дисков и питания.

Для выработки сигналов INDEX и TRACK-0, в HDD нет оптических датчиков, как в FDD, а используются специальные индексные дорожки. После включения питания и разгона шпиндельного двигателя ищется служебная дорожка "-1", устанавливается внутренний счетчик цилиндров, головки перемещаются на цилиндр 0 и сигнал TRACK-0 передается через интерфейс контроллеру. Индексная "дорожка -1" содержит специальную метку для опознания дорожки именно как "-1".

Эксплуатационные характеристики HDD.

Номенклатура HDD включает много типов дисководов, отличающихся:

- максимальной емкостью,

- интерфейсом,

- форм-фактором (физическими размерами),

- быстродействием,

- надежностью,

- стоимостью.

Емкость жестких дисков бывает от 20 Мбайт до 80 Гбайт и выше. Дисководы емкостью более 100 Кбайт имеют всегда соленоидный привод и специальное покрытие дисков - напыление магнитного слоя особой структуры, и, тем самым, отличаются повышенными допустимыми продольной и поперечной плотностями записи.

Быстродействие дисковода определяется временем произвольного доступа к информации и зависит от организации хранения данных на диске, скорости вращения пакета дисков и скорости позиционирования головок.

Время доступа к информации на диске складывается из:

1) времени установки головок на требуемый цилиндр и времени успокоения позиционера;

2) времени ожидания подхода искомого сектора к головкам;

3) времени чтения информации с найденного сектора;

4) скорости передачи данных из буфера сектора в DRAM компьютера.

Среднее время установки головок составляет:

для РС/ХТ - 40 - 65 мсек,

для РС/АТ - 28 -40 мсек,

для РС386 - 12 - 20 мсек.

Скорость передачи данных определяется, главным образом, применяемым методом кодирования (FM, MFM, RLL), используемым интерфейсом, наличием буферов данных и их объемами.

Максимальная скорость считывания данных вычисляется как

Vmax = w * N * n * m,

где
w - скорость вращения шпиндельного двигаткля,
N - число секторов на дорожку диска,
n - емкость сектора (количество байтов в секторе),
m - число бит в байте.

Если принять распространенные значения: w = 3600 об/мин, n = 512 байт, m = 8, тогда скорость считывания данных будет определяться количеством секторов на дорожку данного диска

Так, накопитель с 17 секторами на дорожку должен иметь скорость передачи 4.177.920 бит/сек. Реально эту скорость достичь не удается, так как нужно время и для запоминания информации в ОЗУ РС, а пока контроллер и ПДП (или CPU) заняты передачей информации из буфера сектора в ОЗУ, диски продолжают вращаться, так что к концу передачи информации, считанной с предыдущего сектора, следующий сектор бывает уже недоступен (пройден идентификатор следующего сектора) и для чтения требуемого сектора придется ждать еще один оборот диска. Для РС/АТ ранних моделей без прокрутки лишнего оборота мог быть передан только каждый третий сектор, а для РС/ХТ только пятый.

Преодолеть этот недостаток позволяет прием, называемый фактором чередования секторов (Interleave). Смысл его в том, что физические сектора нумеруются (присваиваются адреса) не подряд, а так, чтобы к моменту окончания передачи считанных данных сектора, к головке подходил сектор со следующим по порядку адресом.

Например, при чередовании 3:1 сектора нумеруются в следующем порядке: 1, 7, 13, 2, 8, 14, 3, 9,15, 4 и т. д. Так что, пока контроллер обрабатывает данные из сектора 1, секторы 7 и 13 пройдут мимо головок и к считыванию будет готов сектор 2 и т. д. Выбор фактора чередования (а он устанавливается программно, во время низкоуровневого форматирования диска и записывается как один из параметров конфигурации HDD), должен быть проведен с учетом:

- быстродействия HDD,

- быстродействия контроллера,

- скорости обработки ввода CPU,

- наличия и скорости работы контроллера ПДП.

Вручную все это учесть достаточно сложно, но помогают некоторые программы тестирования из DOS и NU: CALIBRATE, ROM Diagnostic и др.

Важным, с точки зрения возможности установки HDD в корпусе РС, является форм-фактор:

- 5.25" полной высоты (82 мм), сейчас такие диски уже не выпускаются, но в компьютерах, выпущенных в 80 - 90 годы еще встречаются,

- 5.25" половинной высоты (41 мм),

- 3.5" половинной высоты.

Интерфейсы связи НЖМД с контроллером.

Средство связи HDD с контроллером, интерфейс, должен быть строго согласован для обоих этих устройств. В основном используются следующие типы интерфейсов:

ST-506 - с FM-кодированием, очень устаревший, использовался для РС/ХТ;

ST-506/412 - с MFM-кодированием. Этот интерфейс обладает свойством буферизованного (быстрого) поиска. Его достоинство в том, что он имеет встроенные средства автоконфигурирования и может автоматически изменять тип и параметры диска: число головок, номер цилиндра прекомпенсации, зону парковки головок.

Строго говоря, физические параметры, такие, как количество цилиндров (количество дорожек на каждой из поверхностей диска - определяется диаметром диска и шагом позиционера, управляемого от ШД или служебной поверхности DSS), количество головок (рабочих поверхностей пакета дисков), зона парковки головок, емкость неформатированного диска - неизменны и изменены быть не могут. Но для контроллера эти параметры могут быть и переопределены. Так число головок может быть условно увеличено за счет уменьшения числа дорожек, зона парковки при этом тоже изменится (оставаясь физически той же, самой близкой к центру, еще доступной позиционеру). Начальный цилиндр прекомпенсации при этом тоже изменится, но физически опять-таки оставаясь тем же;

IDE (AT BUS) - достаточно современный скоростной интерфейс, самый популярный до недавнего времени;

ST-412/RLL - интерфейс уже устаревший, но RLL-кодирование (Run Length Limited) поддерживает высокую продольную плотность записи (RLL 2,7 - максимальное число неперемагничивающихся элементарных ячеек носителя - 2 из 7). Способы кодирования FM и MFM тоже могут считаться разновидностями RLL: FM = RLL 0,1; MFM = RLL 1,3.

ESDI - вполне современный интерфейс, использует MFM- или RLL-кодирование и очень многие HDD выпускаются именно с этим интерфейсом;

SCSI - относительно новый тип интерфейса, весьма перспективный, поддерживает технологию P&P (Plug and Play - подключил-и-работай), но требует, чтобы HDD имел встроенный SCSI-контроллер, а сам контроллер шины SCSI является только HOST-адаптером, ведущим, выполняющим функции управления исполнительными контроллерами, которые находятся непосредственно в УВВ, и решает задачу стандартного сопряжения со всеми ведомыми УВВ.

Каждый из приведенных здесь интерфейсов требует, для соединений диска с контроллером (адаптером), своих шлейфов, отличающихся количеством проводов, типом используемых разъемов и даже - числом соединительных шлейфов. Полезно знать их разновидности:

Контроллерчисло проводов и шлейфов

ST506/41234 управляющего и 20 - данных (два шлейфа)

ESDI34 управляющего и 20 - данных (два шлейфа)

Адаптер

IDE40

SCSI50

Контрольные вопросы.

1. Как обеспечивается необходимый для работы дисковода зазор между головками чтения-записи и поверхностью диска в НЖМД?

2. В каких условиях можно разбирать Head Disk Assembly НЖМД?

3. Какие меры предосторожности следует принимать для защиты НЖМД от микроаварий головок?

4. Какие типы приводов головок используются в НЖМД?

5. В чем состоят достоинства и недостатки соленоидного привода головок НЖМД?

6. Для чего служит сервоповерхность пакета дисков НЖМД?

7. Из чего складывается время доступа к информации на диске?

8. Что такое фактор чередования секторов и как он влияет на производительность дисковой
системы РС?

9. В чем достоинства SCSI-интерфейса?

к библиотеке   Архитектура IBMPC   ИСиТК   ОИС   ОСВМ   визуальные среды - 4GL   технологии программирования

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution