Регрессия специального вида

Кроме рассмотренных, в Mathcad встроено еще несколько видов трехпара-метрической регрессии. Их реализация несколько отличается от приведенных выше вариантов регрессии тем, что для них, помимо массива данных, требуется задать некоторые начальные значения коэффициентов а,ь,с. Используйте соответствующий вид регрессии, если хорошо представляете себе, какой зависимостью описывается Ваш массив данных. Когда тип регрессии плохо отражает последовательность данных, то ее результат часто бывает неудовлетворительным и даже сильно различающимся в зависимости от выбора начальных значений. Каждая из функций выдает вектор уточненных параметров а,b,с.

  • expfit(x,y,g) —регрессия экспонентой f(x)=aebx+c;
  • lgsfit(x,y,g) —регрессия логистической функцией f (x)=a/ (1+bесх);
  • sinf it (x,y,g) —регрессия синусоидой f(x) =asin (х+b)+с;
  • pwfit(x,y,g) — регрессия степенной функцией f(x)=axb+c;
  • iogfit(x,y,g) — рефессия логарифмической функцией f(x) =aln(х+b)+с;
  • lnfit(x,y) — регрессия двухпараметрической логарифмической функцией f(x)=aln(x)+b;
    • х — вектор действительных данных аргумента;
    • у — вектор действительных значений того же размера;
    • g — вектор из трех элементов, задающий начальные значения а,b,с.

Правильность выбора начальных значений можно оценить по результату регрессии — если функция, выданная Mat head, хорошо приближает зависимость у (х), значит они были подобраны удачно.

Пример расчета одного из видов трехпараметрической регрессии (экспоненциальной) приведен в листинге 15.13 и на рис. 15.17. В предпоследней строке листинга выведены в виде вектора вычисленные коэффициенты а,ь,с, а в последней строке через эти коэффициенты определена искомая функция f (х).

Листинг 15.13. Экспоненциальная регрессия

Многие задачи регрессии данных различными двухпараметрическими зависимостями у (х) можно свести к более надежной, с вычислительной точки зрения, линейной регрессии. Делается это с помощью соответствующей замены переменных.

Рис. 15.17. Экспоненциальная регрессия (листинг 15.13)

  

Знаете ли Вы, что, как и всякая идолопоклонническая религия, релятивизм представляет собой инструмент идеологического подчинения одних людей другим с помощью абсолютно бессовестной манипуляции их психикой для достижения интересов определенных групп людей, стоящих у руля этой воровской машины? Подробнее читайте в FAQ по эфирной физике.

{DATA}
НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 21.07.2019 - 09:45: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА - Карим_Хайдаров.
21.07.2019 - 09:44: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
21.07.2019 - 09:43: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Галины Царёвой - Карим_Хайдаров.
20.07.2019 - 05:34: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
20.07.2019 - 05:30: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
16.07.2019 - 10:00: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
16.07.2019 - 09:58: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
12.07.2019 - 17:46: ФИЗИКА ЭФИРА - Aether Physics -> Понятие времени и эфир - Владимир_Афонин.
11.07.2019 - 07:14: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
11.07.2019 - 06:57: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
03.07.2019 - 05:38: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
27.06.2019 - 10:01: СЕЙСМОЛОГИЯ - Seismology -> Запасы воды под Землёй - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution