Собственные векторы и собственные значения матриц

Вторая по частоте применения задача вычислительной линейной алгебры — это задача поиска собственных векторов х и собственных значений X матрицы А, т. е. решения матричного уравнения Ах=Хх. Такое уравнение имеет решения в виде собственных значений L1L2,... и соответствующих им собственных векторов x1, х2,... Для решения таких задач на собственные векторы и собственные значения в Mathcad встроено несколько функций, реализующих довольно сложные вычислительные алгоритмы:

  • eigenvais(A) — вычисляет вектор, элементами которого являются собственные значения матрицы А;
  • eigenvecs(A) — вычисляет матрицу, содержащую нормированные собственные векторы, соответствующие собственным значениям матрицы А;
    • n-й столбец вычисляемой матрицы соответствует собственному вектору n-го собственного значения, вычисляемого eigenvais;
  • eigenvec(A,A.) — вычисляет собственный вектор для матрицы А и заданного собственного значения L;
    • А — квадратная матрица.

Применение этих функций иллюстрирует листинг 9.36. Проверка правильности нахождения собственных векторов и собственных значений приведена в листинге 9.37. Причем проверка правильности выражения Ах=Lх проведена дважды — сначала на числовых значениях х и L, а потом путем перемножения соответствующих матричных компонентов.

Листинг 9.36. Поиск собственных векторов и собственных значений

Листинг 9.37. Проверка правильности нахождения собственных векторов собственных значений (продолжение листинга 9,36)

Помимо рассмотренной проблемы поиска собственных векторов и значений, иногда рассматривают более общую задачу, называемую задачей на обобщенные собственные значения: Aх=LBx. В ее формулировке помимо матрицы А присутствует еще одна квадратная матрица в. Для задачи на обобщенные собственные значения имеются еще две встроенные функции, действие которых аналогично рассмотренным (листинги 9.38 и 9.39):

  • genvais(A,B) — вычисляет вектор v собственных значений, каждый из которых удовлетворяет задаче на обобщенные собственные значения;
  • genvecs(A/B) — вычисляет матрицу, содержащую нормированные собственные векторы, соответствующие собственным значениям в векторе v, который вычисляется с помощью genvais. В этой матрице i-й столбец является собственным вектором х, удовлетворяющим задаче на обобщенные собственные значения;
    • А, в — квадратные матрицы.

Листинг 9.38. Поиск обобщенных собственных векторов и собственных значений

Листинг 9.39. Проверка правильности нахождения собственных векторов и собственных значений (продолжение листинга 9.38)

  

Знаете ли Вы, что релятивизм (СТО и ОТО) не является истинной наукой? - Истинная наука обязательно опирается на причинность и законы природы, данные нам в физических явлениях (фактах). В отличие от этого СТО и ОТО построены на аксиоматических постулатах, то есть принципиально недоказуемых догматах, в которые обязаны верить последователи этих учений. То есть релятивизм есть форма религии, культа, раздуваемого политической машиной мифического авторитета Эйнштейна и верных его последователей, возводимых в ранг святых от релятивистской физики. Подробнее читайте в FAQ по эфирной физике.

{DATA}
НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 24.08.2019 - 06:34: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
24.08.2019 - 06:33: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
24.08.2019 - 06:30: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
21.08.2019 - 14:24: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
19.08.2019 - 13:00: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
19.08.2019 - 12:52: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
17.08.2019 - 18:50: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Тиртхи - Карим_Хайдаров.
15.08.2019 - 23:52: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
15.08.2019 - 23:50: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА - Карим_Хайдаров.
15.08.2019 - 17:13: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМЫ ВНЕДРЕНИЯ НОВЫХ ТЕХНОЛОГИЙ - Карим_Хайдаров.
15.08.2019 - 16:22: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
15.08.2019 - 14:50: ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА - Experimental Physics -> Вихревые эффекты и вихревые теплогенераторы - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution