Собственные векторы и собственные значения матрицВторая по частоте применения задача вычислительной линейной алгебры — это задача поиска собственных векторов х и собственных значений X матрицы А, т. е. решения матричного уравнения Ах=Хх. Такое уравнение имеет решения в виде собственных значений L1L2,... и соответствующих им собственных векторов x1, х2,... Для решения таких задач на собственные векторы и собственные значения в Mathcad встроено несколько функций, реализующих довольно сложные вычислительные алгоритмы:
Применение этих функций иллюстрирует листинг 9.36. Проверка правильности нахождения собственных векторов и собственных значений приведена в листинге 9.37. Причем проверка правильности выражения Ах=Lх проведена дважды — сначала на числовых значениях х и L, а потом путем перемножения соответствующих матричных компонентов. Листинг 9.36. Поиск собственных векторов и собственных значений Листинг 9.37. Проверка правильности нахождения собственных векторов собственных значений (продолжение листинга 9,36) Помимо рассмотренной проблемы поиска собственных векторов и значений, иногда рассматривают более общую задачу, называемую задачей на обобщенные собственные значения: Aх=LBx. В ее формулировке помимо матрицы А присутствует еще одна квадратная матрица в. Для задачи на обобщенные собственные значения имеются еще две встроенные функции, действие которых аналогично рассмотренным (листинги 9.38 и 9.39):
Листинг 9.38. Поиск обобщенных собственных векторов и собственных значений Листинг 9.39. Проверка правильности нахождения собственных векторов и собственных значений (продолжение листинга 9.38) |
Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
- Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.
В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.
Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.