Системы линейных алгебраических уравнений

Центральным вопросом вычислительной линейной алгебры является решение систем линейных алгебраических уравнений (СЛАУ), т. е. систем уравнений вида

аi1X1i2х2+. . .+ainхn=bi                (1)

В матричной форме СЛАУ записывается в эквивалентном виде:

Ах = b,                                                      (2)

где А — матрица коэффициентов СЛАУ размерности NXN, х — вектор неизвестных, b— вектор правых частей уравнений.

К системам линейных уравнений сводится множество, если не сказать большинство, задач вычислительной математики. Один из таких примеров приведен в разд. "Разностные схемы для ОДУ" гл. 12.

СЛАУ имеет единственное решение, если матрица А является невырожденной, или, по-другому, несингулярной, т. е. ее определитель не равен нулю. С вычислительной точки зрения, решение СЛАУ не представляет трудностей, если матрица А не очень велика. С большой матрицей проблем также не возникнет, если она не очень плохо обусловлена. В Mathcad СЛАУ можно решить как в более наглядной форме (1), так и в более удобной для записи форме (2). Для первого способа следует использовать вычислительный блок Given/Find (см. гл. 8), а для второго — встроенную функцию isoive.

  • isoive ( А, Ь) — решение системы линейных уравнений;
  • А — матрица коэффициентов системы;
  • b — вектор правых частей.

Применение функции isoive показано в листинге 9.33. При этом матрица А может быть определена любым из способов (см. разд. "Массивы" гл. 4), необязательно явно, как во всех примерах этого раздела. Встроенную функцию isoive допускается применять и при символьном решении СЛАУ (листинг 9.34).

Соответствующая матрице А и вектору ь система уравнений выписана явно в листинге 9.35.

Листинг 9.33. Решение СЛАУ

Листинг 9.34. Символьное решение СЛАУ (продолжение листинга 9.33)

В некоторых случаях, для большей наглядности представления СЛАУ, его можно решить точно так же, как систему нелинейных уравнений (см. гл. 8). Пример численного решения СЛАУ из предыдущих листингов показан в листинге 9.35. Не забывайте, что при численном решении всем неизвестным требуется присвоить начальные значения (это сделано в первой строке листинга 9.35). Они могут быть произвольными, т. к. решение СЛАУ с невырожденной матрицей единственно.

При решении СЛАУ с помощью функции Find Mathcad автоматически выбирает линейный численный алгоритм, в чем можно убедиться, вызывая на имени Find контекстное меню.

Листинг 9.35. Решение СЛАУ с помощью вычислительного блока

  

Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

{DATA}
НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 13.07.2020 - 18:06: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
13.07.2020 - 18:05: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
13.07.2020 - 18:04: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от схиигумена Сергия (Николая Романова) - Карим_Хайдаров.
13.07.2020 - 17:50: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.
13.07.2020 - 17:23: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> КОМПЬЮТЕРНО-СЕТЕВАЯ БЕЗОПАСНОСТЬ ДЛЯ ВСЕХ - Карим_Хайдаров.
13.07.2020 - 13:57: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
13.07.2020 - 13:29: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
13.07.2020 - 13:28: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
13.07.2020 - 11:13: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
13.07.2020 - 11:12: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
13.07.2020 - 09:19: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
12.07.2020 - 21:29: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> НОВЫЕ ТЕХНОЛОГИИ ИНТЕРНЕТ - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution