Символьное решение уравнений

Некоторые уравнения можно решить точно с помощью символьного процессора Mathcad. Делается это очень похоже на численное решение уравнений с применением вычислительного блока. Присваивать неизвестным начальные значения нет необходимости. Листинги 8.16 и 8.17 демонстрируют символьное решение уравнения с одним неизвестным и системы двух уравнений с двумя неизвестными соответственно.

Листинг 8.16. Символьное решение алгебраического уравнения с одним неизвестным

Листинг 8.17. Символьное решение системы алгебраических уравнений

Как видно, вместо знака равенства после функции Find в листингах следует знак символьных вычислений, который можно ввести с панели Symbolic (Символика) или, нажав клавиши <Ctrl>+<.>. He забывайте, что сами уравнения должны иметь вид логических выражений, т. е. знаки равенства нужно вводить с помощью панели Booleans (Булевы операторы). Обратите внимание, что в листинге 8.17 вычислены как два первых действительных корня, которые мы уже находили численным методом (см. разд. 8.3), так и два других мнимых корня. Эти два последних корня чисто мнимые, т. к. множитель, входящий в них.

С помощью символьного процессора решить уравнение с одним неизвестным можно и по-другому:

  • Введите уравнение, пользуясь панелью Booleans (Булевы операторы) или нажав клавиши <Ctrl>+<> для получения логического знака равенства, например х2+2(х-4)=0.
  • Щелчком мыши выберите переменную, относительно которой Вы собираетесь решить уравнение.
  • Выберите в меню Symbolics (Символика) пункт Variable / Solve (Переменная / Решить).

После строки с уравнением появится строка с решением или сообщение о невозможности символьного решения этого уравнения.

В данном примере после осуществления описанных действий появляется вектор, состоящий из двух корней уравнения

Символьные вычисления могут производиться и над уравнениями, в которые, помимо неизвестных, входят различные параметры. В листинге 8.18 приведен пример решения уравнения четвертой степени с параметром а. Как видите, результат получен в аналитической форме.

Листинг 8.18. Символьное решение уравнения, зависящего от параметра

В следующем разделе мы рассмотрим более подробно, как с помощью Mathcad можно численными методами решать подобные задачи.

  

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

{DATA}
НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 14.10.2019 - 03:09: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Марины Мелиховой - Карим_Хайдаров.
13.10.2019 - 18:09: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Светланы Вислобоковой - Карим_Хайдаров.
13.10.2019 - 08:25: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
13.10.2019 - 08:05: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Декларация Академической Свободы - Карим_Хайдаров.
13.10.2019 - 08:03: ЭКОЛОГИЯ - Ecology -> Биохимия мозга от проф. С.В. Савельева и не только - Карим_Хайдаров.
12.10.2019 - 07:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Константина Сёмина - Карим_Хайдаров.
11.10.2019 - 08:59: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
11.10.2019 - 06:24: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
11.10.2019 - 03:57: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
11.10.2019 - 03:33: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
11.10.2019 - 03:22: ЭКОЛОГИЯ - Ecology -> Глобальное потепление - миф или... миф? - Карим_Хайдаров.
09.10.2019 - 19:01: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution