к содержанию

3.4. Поперечные волны эфира (“электромагнитные” волны)

К так называемым электромагнитным волнам, то есть к поперечным волнам эфира, электричество имеет самое косвенное отношение: оно может иногда их порождать, — а магнетизм вообще не имеет никакого отношения. Странным и непонятным в истории “электромагнитных” волн кажется все: и их предсказание на основе электромагнетизма, и создание их электромагнитной теории, и — самое удивительное — плодотворность этой теории: благодаря ей был создан потрясающий мир радиоволн; и в основе всего этого — ошибочная теория. Впрочем, ошибочные теории в науке — не новость, и многие из них были на каком-то этапе плодотворными; взять хотя бы для примера ту же планетарную модель атома.

Как выглядят “электромагнитные” волны в свете эфирной теории? Это — обычные поперечные волны эфира; их зарождение и распространение удобно рассматривать на примере радиоволн. Но сначала — образное сравнение: воткнем в воду палку и будем совершать вертикальные колебания; от палки в разные стороны побегут волны. Точно так же рождаются и радиоволны: электроны, бегающие туда-сюда по антенне, увлекают за собой эфир, и тот начинает “волноваться”; волны расходятся от антенны кругами.

Если вникать в природу поперечных колебаний эфира более глубоко, то можно отметить, что они возникают и распространяются благодаря двум таким основополагающим факторам: упругости эфирных шариков и их инерции. Впрочем, упругость и инерция лежат в основе всех колебаний: и звуковых, и механических, и прочих.

Низкочастотные поперечные волны эфира расходятся во все стороны равномерно; высокочастотные — предпочитают распространяться в одном каком-то направлении, а такие, как свет, — лучом, и поэтому амплитуда его колебаний не затухает.

Поперечные волны эфира могут распространяться в различных средах, так как эфир есть везде, но в чистом эфире они распространяются легче всего; и их распространение, как мы видим, никак не связано с электронами, а, значит, и с электричеством, и с магнетизмом.

Кроме поперечных волн в эфире должны существовать продольные: от низкочастотных гравитационных до высокочастотных с частотой, значительно превышающей частоту поперечных волн, — и скорость их распространения должна быть на несколько десятичных порядков выше. Об освоении этих продольных волн приходится пока только мечтать.

к содержанию

Знаете ли Вы, как разрешается парадокс Ольберса?
(Фотометрический парадокс, парадокс Ольберса - это один из парадоксов космологии, заключающийся в том, что во Вселенной, равномерно заполненной звёздами, яркость неба (в том числе ночного) должна быть примерно равна яркости солнечного диска. Это должно иметь место потому, что по любому направлению неба луч зрения рано или поздно упрется в поверхность звезды.
Иными словами парадос Ольберса заключается в том, что если Вселенная бесконечна, то черного неба мы не увидим, так как излучение дальних звезд будет суммироваться с излучением ближних, и небо должно иметь среднюю температуру фотосфер звезд. При поглощении света межзвездным веществом, оно будет разогреваться до температуры звездных фотосфер и излучать также ярко, как звезды. Однако в дело вступает явление "усталости света", открытое Эдвином Хабблом, который показал, что чем дальше от нас расположена галактика, тем больше становится красным свет ее излучения, то есть фотоны как бы "устают", отдают свою энергию межзвездной среде. На очень больших расстояниях галактики видны только в радиодиапазоне, так как их свет вовсе потерял энергию идя через бескрайние просторы Вселенной. Подробнее читайте в FAQ по эфирной физике.

Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution