Анализируя спектр одиночного прямоугольного импульса (см. рис.1.10), можно установить, что при увеличении его длительности ф от 0 до спектр сокращается от безграничного (у дельта-функции) до одной спектральной линии в начале координат, соответствующей постоянному значению сигнала. Это свойство сокращения ширины спектра сигнала при увеличении его длительности и наоборот справедливо для сигналов любой формы. Оно вытекает непосредственно из особенностей прямого и обратного интегрального преобразования Фурье, у которых показатель степени экспоненциальной функции в подынтегральных выражениях имеет переменные t и щ в виде произведения.
Рассмотрим функцию u(t) определенной продолжительности и функцию u(t), длительность которой при л>1 будет в л раз меньше. Считая, что u(t) имеет спектральную характеристику S(jщ), найдем соответствующую характеристику S
(jщ) для u(
t):
где
Следовательно, спектр укороченного в л раз сигнала ровно в л раз шире. Коэффициент
l / л перед S(jщ / л) изменяет только амплитуду гармонических составляющих и на ширину спектра не влияет.Другой важный вывод, также являющийся прямым следствием Фурье-преобразования, заключается в том, что длительность сигнала и ширина его спектра не могут быть одновременно ограничены конечными интервалами: если длительность сигнала ограничена, то спектр его неограничен, и, наоборот, сигнал с ограниченным спектром длится бесконечно долго. Справедливо соотношение
где Дt - длительность импульса; Дf - ширина спектра импульса; С - постоянная величина, зависящая от формы импульса (при ориентировочных оценках обычно принимают С=1).
Реальные сигналы ограничены во времени, генерируются и передаются устройствами, содержащими инерционные элементы (например, емкости и индуктивности в электрических цепях), и поэтому не могут содержать гармонические составляющие сколь угодно высоких частот.
В связи с этим возникает необходимость ввести в рассмотрение модели сигналов, обладающие как конечной длительностью, так и ограниченным спектром. При этом в соответствии с каким-либо критерием дополнительно ограничивается либо ширина спектра, либо длительность сигнала, либо оба параметра одновременно. В качестве такого критерия используется энергетический критерий, согласно которому практическую длительность Тп и практическую ширину спектра w п выбирают так, чтобы в них была сосредоточена подавляющая часть энергии сигнала.
Для сигналов, начинающихся в момент времени
t0 = О, практическая длительность определяется из соотношениягде з - коэффициент, достаточно близкий к 1 (от 0,9 до 0,99 в зависимости от требований к качеству воспроизведения сигнала).
Принимая во внимание равенство Парсеваля (1.56), для практической ширины спектра сигнала соответственно имеем
Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.
Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.
Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.
Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.
|
![]() |