к библиотеке   к оглавлению   визуальные среды - 4GL   технологии программирования

Прикладная теория информации

Частотная форма представления сигнала

Рассмотрим, какие функции целесообразно выбирать в качестве базисных при анализе инвариантных во времени линейных систем. При исследовании таких систем решения всегда содержат комплексные экспоненциальные функции времени. Детерминированные сигналы, описываемые экспоненциальными функциями времени, при прохождении через инвариантные во времени линейные системы не изменяются по своему характеру, что является следствием инвариантности класса экспоненциальных функций относительно операций дифференцирования и интегрирования.

Широко используются представления детерминированных сигналов с применением базисных функций еpt как при с = (преобразование Фурье), так и при p = s+jw (обобщенное преобразование Фурье, известное как преобразование Лапласа).

До сих пор мы не касались физической интерпретации базисных функций. Для чисто математических преобразований она не обязательна. Однако такая интерпретация имеет безусловные преимущества, так как позволяет глубже вникнуть в физический смысл явлений, протекающих в системах при прохождении сигналов.

Использование экспоненциальных базисных функций в преобразовании Фурье комплексно-сопряженными парами (с положительным и отрицательным параметром щ) позволяет в соответствии с формулой Эйлера:

представить сложный детерминированный сигнал в виде суммы гармонических составляющих. Поскольку параметр щ в этом случае имеет смысл круговой частоты, результат такого преобразования называют частотной формой представления сигнала.

В силу указанных преимуществ разложение сигналов по системе гармонических базисных функций подверглось всестороннему исследованию, на основе которого была создана широко известная классическая спектральная теория сигналов.

В дальнейшем, если это не оговорено специально, спектральное представление сигналов рассматривается в рамках классической теории.

Спектры периодических сигналов. Периодических сигналов, естественно, не существует, так как любой реальный сигнал имеет начало и конец. Однако при анализе сигналов в установившемся режиме можно исходить из предположения, что они существуют бесконечно долго и принять в качестве математической модели таких сигналов периодическую функцию времени. Далее рассматривается представление таких функций, как в виде суммы экспоненциальных составляющих, так и с преобразованием их в гармонические.

Пусть функция u(t), заданная в интервале времени и удовлетворяющая условиям Дирихле, повторяется с периодом T = 2 / t2-t1 на протяжении времени от - до +.

Условия Дирихле: на любом конечном интервале функция должна быть непрерывной или иметь конечное число точек разрыва первого рода, а также конечное число экстремальных точек. В точках разрыва функцию u(t) следует считать равной.

Если в качестве базисных выбраны экспоненциальные функции, то выражение (1.5) запишем в виде

Соотношение (1.15) представляет собой ряд Фурье в комплексной форме, содержащий экспоненциальные функции как с положительным, так и с отрицательным параметром щ (двустороннее частотное представление). Составляющие с отрицательными частотами являются следствием комплексной формы записи вещественной функции.

Функцию A(jkw 1) принято называть комплексным спектром периодического сигнала u(t). Этот спектр дискретный, так как функция A(jkw 1) определена на числовой оси только для целых значений k. Значение функции A(jkw 1) при конкретном k называют комплексной амплитудой.

Огибающая комплексного спектра A(jw ) имеет вид

Запишем комплексный спектр в форме

Модуль комплексного спектра A(kw 1) называют спектром амплитуд, а функцию ц(kw 1) - спектром фаз.

Если известны спектр амплитуд и спектр фаз сигнала, то в соответствии с (1.15) он восстанавливается однозначно. В практических приложениях более значимым является спектр амплитуд, а информация о фазах составляющих часто несущественна.

Поскольку A(kw 1) и ц(kw 1) отличны от нуля только при целых k, спектры амплитуд и фаз периодического сигнала являются дискретными.

Воспользовавшись формулой Эйлера е - jkw t = coskw t - j sinkw t, выразим комплексный спектр A(jkw 1) в виде действительной и мнимой частей:

где

Спектр амплитуд

является четной функцией k, т.е.

Поскольку четность Ak и Вk, противоположна, спектр фаз

функция нечетная, т.е.

При k = 0 получаем постоянную составляющую

От двустороннего спектрального представления легко перейти к одностороннему (не имеющему отрицательных частот), объединяя комплексно-сопряженные составляющие [см. (1.14)]. В этом случае получаем ряд Фурье в тригонометрической форме. Действительно, выделив в (1.15) постоянную составляющую A0/2 и суммируя составляющие симметричных частот щ и - щ, имеем

Учитывая соотношения (1.15) и (1.16), запишем

Воспользовавшись формулой Эйлера (1.14) и обозначив ц(kw 1) через цk, окончательно получим

Распространена и другая тригонометрическая форма ряда Фурье, имеющая вид

Однако она менее удобна для практического применения. Отдельные составляющие в представлениях (1.23) и (1.24) называют гармониками. Как спектр амплитуд, так и спектр фаз периодического сигнала удобно представлять наглядно спектральными диаграммами. На диаграмме спектра амплитуд каждой гармонике ставится в соответствие вертикальный отрезок, длина которого пропорциональна амплитуде, а расположение на оси абсцисс отвечает частоте этой составляющей. Аналогично на диаграмме спектра фаз обозначают значения фаз гармоник. Поскольку в результате спектры отображаются совокупностями линий, их часто называют линейчатыми.

Отметим, что дискретный (линейчатый) спектр не обязательно должен принадлежать периодическому сигналу. Спектр периодического сигнала характеризует совокупность гармоник, кратных основной частоте щй. Линейчатые спектры, включающие гармоники некратных частот, принадлежат так называемым почти периодическим сигналам. Диаграмма спектра амплитуд периодического сигнала показана на рис.1.4 Огибающую A(t) этого спектра амплитуд можно получить, заменив kw 1 в A(kw 1) на ω, где ω = kω1 для k-й гармоники.

Пример 1.1 Определить спектры амплитуд и фаз периодической последовательности прямоугольных импульсов длительностью ф и амплитудой u0, следующих с частотой ω1 = 2р / Ф (рис.1.5).

Функция u(t), описывающая такую последовательность импульсов на периоде, может быть задана в виде:

В соответствии с (1.16) имеем

или

Амплитуды гармоник, включая постоянную составляющую, равную А0/2, определим из выражения

при k = О, 1, 2,...

Выбор начала отсчета времени на их величину не влияет. Огибающая спектра амплитуд определяется видом функции

При щ = 0 получаем

Характер изменения амплитуд диктуется функцией sin х / х и не зависит от частоты следования импульсов. На частотах, кратных 2р / ф, огибающая спектра равна нулю.

На рис.1.6 приведена диаграмма спектра амплитуд для случая

Ф / ф = 3 [ω1 = 2р / (3ф)]. Число составляющих в спектре бесконечно велико. Крутизна фронтов импульсов обусловлена наличием в спектре составляющих с частотами, существенно превышающими основную частоту ω1.

Опираясь на формулу (1.29) и принимая во внимание, что знаки функции sin(kw 1 / 2) на последовательности интервалов частот dω = 2р / ф чередуются, выражение для спектра фаз запишем следующим образом:

где n - номер интервала частот ω = 2р / ф, отсчитываемого от ω = 0.

Спектр фаз зависит от выбора начала отсчета. Если передний фронт прямоугольного импульса последовательности приходится на начало отсчета времени, то на каждом интервале dω = 2р / ф фазы составляющих возрастают линейно. Диаграмма спектра фаз последовательности прямоугольных импульсов для этого случая (Ф / ф = 3, t1 = 0) показана на рис.1.7

Пример 1.2 Вычислить несколько первых членов ряда Фурье для периодической последовательности прямоугольных импульсов и проследить, как их гумма сходится к указанному сигналу.

Воспользуемся результатами предыдущего примера для случая широко используемой на практике периодической последовательности импульсов, у которых длительность ф равна половине периода Т. Примем также t1 = 0.

По формуле (1.32) определим постоянную составляющую, а по формулам (1.30) и (1.33) - амплитуды и фазы пяти первых гармоник. Данные расчетов сведены в табл.1.1 Четные гармоники в табл.1.1 не указаны, так как они равны нулю.

Таблица 1.1

Суммируя указанные составляющие, получим последовательность импульсов (рис.1.8), отличающихся от прямоугольных в основном недостаточно высокой крутизной фронтов.

Отметим, что крутизна фронтов импульсов обусловлена наличием в их спектре составляющих с частотами, многократно превышающими основную частоту.

Распределение энергии в спектре. Рассмотрим, как распределяется энергия сложного периодического сигнала u(t) по его спектральным составляющим. Под временной функцией u(t) будем подразумевать электрическое напряжение на резисторе в 1 Ом. Энергия WT, выделяемая на этом резисторе за время, равное периоду колебаний Т,

Используя спектральное представление u(t) в виде ряда Фурье (1.15), получим

Определим значения интегралов в выражении (1.35):

Так как A(jkw 1) и А(-jkw 1) комплексно сопряжены, то

С учетом (1.28) и (1.29) выражение для WT существенно упрощается:

Из (1.38) следует, что средняя за период энергия сложного периодического сигнала равна сумме средних энергий, выделяемых на резисторе в 1 Ом каждой его гармоникой в отдельности (включая постоянную составляющую).

С течением времени выделяемая энергия безгранично растет, при этом средняя мощность остается постоянной:

Важно отметить, что она не зависит от фаз отдельных гармоник и, следовательно, будет сохранять свое значение при изменениях формы сигнала, обусловленных нарушениями фазовых соотношений гармоник спектра.

Пример 1.3 Определим, какая часть средней мощности, выделяемой на резисторе с сопротивлением в 1 Ом, периодической последовательностью прямоугольных импульсов с параметрами из примера 1.2 приходится на пять первых гармоник и постоянную составляющую.

Значения амплитуд составляющих определены ранее (см. табл.11). Подставляя их в (1.39), для средней мощности Р5 сигнала, включающего указанные составляющие, получим

Так как средняя мощность последовательности прямоугольных импульсов при ф= Т / 2 равна 0,5 , то искомая часть составляет 96% от этой мощности.

Область частот, в которой сосредоточена подавляющая часть мощности периодического сигнала, называют практической шириной его спектра. Если не предъявляется жестких требований относительно крутизны фронтов импульсов (см. пример 1 2), расширение этой области нецелесообразно.

Спектры непериодических сигналов. Любой физически реализуемый сигнал ограничен во времени и обладает конечной энергией. Функции, отображающие реальные сигналы, удовлетворяют условиям Дирихле и абсолютно интегрируемы, т.е.

где M - конечная величина.

Модели таких сигналов также могут быть представлены совокупностью гармонических составляющих в соответствии с выражением (1.2). Конкретный вид спектрального преобразования для непериодического сигнала получим, проследив изменения, происходящие в спектре периодической последовательности импульсов u1(t) при увеличении периода их повторения.

В соответствии с формулой (1.30), которая справедлива для любого значения периода Т, абсолютные значения амплитуд спектральных составляющих в (1.27) при увеличении периода уменьшаются. Так как частоты составляющих спектра кратны основной частоте, то при ее уменьшении линии на спектральной диаграмме сближаются.

Спектральное представление для одиночного импульса u(t) получим как следствие увеличения периода сигнала u1(t) до бесконечности.

Пару преобразований Фурье для периодической функции u1(t) запишем в форме (1.15) и (1.16):

При T u1(t) переходит в u(t), частота ω1 уменьшается до dw , а kw 1 превращается в текущую частоту щ. Заменяя суммирование интегрированием, находим

Обозначив интеграл в квадратных скобках S(jω), получим формулы для прямого и обратного интегрального преобразования Фурье:

Величину S(jω) называют комплексной спектральной плотностью или спектральной характеристикой. Она имеет размерность [амплитуда / частота]. На каждой конкретной частоте амплитуда соответствующей составляющей равна нулю. Сравнивая (1.15) и (1.42), находим, что бесконечно малому интервалу частоты dω соответствует составляющая с бесконечно малой комплексной амплитудой dA(jw ):

Сравнение выражения (1.41) для спектральной характеристики функции u(t), заданной на интервале времени , с формулой (1.17) для огибающей комплексного спектра такой же функции, периодически продолжающейся во времени, показывает, что они различаются только множителем:

Поэтому по известной спектральной характеристике одиночного импульса легко построить линейчатый спектр их периодической последовательности. Соотношением (1.44) объясняется и тот факт, что для различных представлений спектральной характеристики имеют место формулы, весьма похожие на (1.18) - (1.24).

Как комплексная величина спектральная характеристика может быть записана в виде

где S(ω) = |S(jω) | называется спектральной плотностью амплитуд или спектром непериодического сигнала.

Так как составляющие расположены на всех частотах, то спектр непериодического сигнала является непрерывным или сплошным. Представим спектральную характеристику состоящей из действительной и мнимой частей:

где

Модуль спектральной характеристики S(ω) определяется выражением

и представляет собой четную функцию частоты.

Для фазы спектральной характеристики S(jω) соответственно получаем

Так как из (1.42) и (1.43) следует, что A(ω) - четная функция частоты, а B(ω) - нечетная, то функция φ(ω) относительно частоты нечетна.

Комплексная форма интегрального преобразования Фурье легко приводится к тригонометрической:

Второй член в связи с нечетностью подынтегрального выражения равен нулю. Окончательно имеем

Преимущество тригонометрической формы записи Фурье-преобразования заключается в возможности некоторого физического толкования с использованием идеализации, не очень далеких от реальности.

Пример 1.4 Найти спектр одиночного прямоугольного импульса, описываемого функцией времени (рис.1.9):

Выражение для спектральной характеристики амплитуд находим в соответствии с (1.41)

Искомый спектр представляет собой модуль этого выражения:

Спектр одиночного прямоугольного импульса (рис.1.10), естественно [см. (1.44)], имеет ту же форму, что и огибающая периодической последовательности таких импульсов (см. рис.1.6).

Пример 1.5 Определить спектр дельта-функции [см. соотношения (1.10) и рис.1.3].

Запишем выражение для спектральной характеристики Sd (jw ) дельта-функции, сосредоточенной в точке :

В соответствии с (1.11) имеем

откуда модуль спектральной характеристики

Следовательно, дельта-функции соответствует сплошной равномерный спектр, включающий в себя составляющие бесконечно больших частот (рис.1.11). При ой = 0 начальные фазы всех составляющих равны нулю.

1

Распределение энергии в спектре. Рассмотрим непериодический сигнал u(t), физическим представлением которого будем считать электрическое напряжение на резисторе с сопротивлением в 1 Ом.

Тогда энергия, выделяемая на этом резисторе

В предположении, что интеграл (1.54) сходится, выразим энергию через модуль спектральной характеристики S(ω) сигнала u(t). Квадрат этого модуля запишем в виде

где

функция, комплексно-сопряженная спектральной характеристике S(jω) сигнала u(t). Тогда

После изменения последовательности интегрирования и использования обратного преобразования Фурье (1.42) получим

Окончательно имеем

Соотношение (1.56) известно как равенство Парсеваля. Оказывается, что энергию, выделяемую непериодическим сигналом за время его существования, можно определить, интегрируя квадрат модуля его спектральной характеристики в интервале частот.

Каждое из бесконечно малых слагаемых (1/р) |S(ω) |2dω, соответствующих бесконечно малым участкам спектра, характеризует энергию, приходящуюся на спектральные составляющие сигнала, сосредоточенные в полосе частот от ω до ω + dω.


Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution