к библиотеке   к оглавлению   визуальные среды - 4GL   технологии программирования

Прикладная теория информации

Формы представления детерминированных сигналов

В зависимости от структуры информационных параметров сигналы подразделяют на дискретные, непрерывные и дискретно-непрерывные.

Сигнал считают дискретным по данному параметру, если число значений, которое может принимать этот параметр, конечно (или счетно). Если множество возможных значений параметра образует континуум, то сигнал считают непрерывным по данному параметру. Сигнал, дискретный по одному параметру и непрерывный по другому, называют дискретно-непрерывным.

В соответствии с этим существуют следующие разновидности математических представлений (моделей) детерминированного сигнала:

Рассматриваемые модели сигналов в виде функций времени предназначены в первую очередь для анализа формы сигналов. Желательно найти такое представление сигнала, которое облегчает задачи исследования прохождения реальных сигналов, часто имеющих достаточно сложную форму, через интересующие нас системы. С этой целью сложные сигналы представляются совокупностью элементарных (базисных) функций, удобных для последующего анализа.

Наиболее широкий класс исследуемых систем - это инвариантные во времени линейные системы.

При анализе прохождения сложного сигнала u(t) через такие системы его представляют в виде взвешенной суммы базисных функций (t) (или соответствующего ей интеграла):

где [,] - интервал существования сигнала.

При выбранном наборе базисных функций сигнал u(t) полностью определяется совокупностью безразмерных коэффициентов . Такие совокупности чисел называют дискретными спектрами сигналов.

На интервале [t, t] выражение (1.1) справедливо как для сигналов, неограниченных во времени, так и для сигналов конечной длительности. Однако за пределами интервала [t, t] сигнал конечной длительности не равен нулю, так как он представляется суммой в том случае, если условно считается периодически продолжающимся. Поэтому, когда для ограниченного во времени сигнала необходимо получить представление, справедливое для любого момента времени, используется интеграл:

(1.2)

где ц(б, t) - базисная функция с непрерывно изменяющимся параметром .

В этом случае имеется непрерывный (сплошной) спектр сигнала, который представляется спектральной плотностью S(). Размерность ее обратна размерности . Аналогом безразмерного коэффициента здесь является величина S() d.

Совокупность методов представления сигналов в виде (1.1) и (1.2) называют обобщенной спектральной теорией сигналов. В рамках линейной теории спектры являются удобной аналитической формой представления сигналов.

Для теоретического анализа базисные функции нужно выбирать так, чтобы они имели простое аналитическое выражение, обеспечивали быструю сходимость ряда (1.1) для любых сигналов u(t) и позволяли легко вычислять значения коэффициентов . Базисные функции не обязательно должны быть действительными, их число может быть неограниченным .

В случае практической аппроксимации реального сигнала совокупностью базисных сигналов решающее значение приобретает простота их технической реализации. Сигнал представляется суммой ограниченного числа действительных линейно независимых базисных функций (сигналов).

Ортогональные представления сигналов. Вычисление спектральных составляющих сигнала существенно облегчается при выборе в качестве базиса системы ортогональных функций.

Систему функций , (t),..., ,..., ,..., называют ортогональной на отрезке [t, t], если для всех k = ; , за исключением случая k = j, удовлетворяется условие:

Эта система функций будет ортонормированной (ортонормальной), если для всех справедливо соотношение

Если соотношение (1.4) не выполняется и

то систему можно нормировать, умножая функции на 1/.

Определим коэффициенты при представлении сигнала u(t) совокупностью ортонормированных функций в виде

предполагая, что интервал [t, t] лежит внутри отрезка ортогональности [t, t].

Правую и левую части уравнения (1.5) умножаем на и интегрируем, на интервале [t, t]:

В силу справедливости условия (1.3) все интегралы в правой части выражения (1.6) при будут равны 0. При k = j в соответствии с (1.4) интеграл равен 1. Следовательно,

В теоретических исследованиях обычно используют полные системы ортогональных функций, обеспечивающие сколь угодно малую разность непрерывной функции u(t) и представляющего ее ряда при неограниченном увеличении числа его членов. Разность оценивают по критерию

При этом говорят о среднеквадратической сходимости ряда к функции u(t).

Широко известной ортонормированной системой является совокупность тригонометрических функций кратных аргументов:

Она ортонормальна на отрезке [-р, р]. Так как соответствующее разложение исторически появилось первым и было названо рядом Фурье, то соотношение (1.5) часто именуют обобщенным рядом Фурье, а значения - обобщенными коэффициентами Фурье.

На рис.1.2 приведена система функций Хаара, ортонормированность которых на интервале 0-1 также очевидна. Известны представления сигналов по системам ортогональных базисных многочленов Котельникова, Чебышева, Лаггера, Лежандра и др., а также неортогональные разложения по функциям Лагранжа, Тейлора и др.

Обобщенная спектральная теория облегчает решение проблемы обоснованного выбора базисных функций для конкретных задач анализа процессов, происходящих при формировании и прохождении сигналов через те или иные звенья информационной системы.

Знаете ли Вы, что такое "усталость света"?
Усталость света, анг. tired light - это явление потери энергии квантом электромагнитного излучения при прохождении космических расстояний, то же самое, что эффект красного смещения спектра далеких галактик, обнаруженный Эдвином Хабблом в 1926 г.
На самом деле кванты света, проходя миллиарды световых лет, отдают свою энергию эфиру, "пустому пространству", так как он является реальной физической средой - носителем электромагнитных колебаний с ненулевой вязкостью или трением, и, следовательно, колебания в этой среде должны затухать с расходом энергии на трение. Трение это чрезвычайно мало, а потому эффект "старения света" или "красное смещение Хаббла" обнаруживается лишь на межгалактических расстояниях.
Таким образом, свет далеких звезд не суммируется со светом ближних. Далекие звезды становятся красными, а совсем далекие уходят в радиодиапазон и перестают быть видимыми вообще. Это реально наблюдаемое явление астрономии глубокого космоса. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 18.01.2017 - 18:15: ГЕОФИЗИКА И ФИЗИКА ПЛАНЕТ - Geophysics and planetology -> Стоячая волна в атмосфере Венеры - Карим_Хайдаров.
17.01.2017 - 09:09: АСТРОФИЗИКА - Astrophysics -> Комета 67Р/Чурюмова-Герасименко и проблема ее происхождения - гость Владимир_Федотьев.
17.01.2017 - 04:16: СОВЕСТЬ - Conscience -> Просвещение от Андрея Фурсова - Карим_Хайдаров.
17.01.2017 - 02:37: СОВЕСТЬ - Conscience -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
15.01.2017 - 21:42: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
14.01.2017 - 08:41: Беседка - Chatter -> С Новым годом. - Карим_Хайдаров.
12.01.2017 - 16:12: СОВЕСТЬ - Conscience -> Проблема государственного терроризма - Карим_Хайдаров.
12.01.2017 - 07:34: СОВЕСТЬ - Conscience -> Просвещение от академика С.Ю. Глазьева - Карим_Хайдаров.
11.01.2017 - 18:50: Беседка - Chatter -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
11.01.2017 - 09:58: ЦИТАТЫ ЧУЖИХ ФОРУМОВ - Outside Quotings -> ЗА НАМИ БЛЮДЯТ - гость Владимир_Федотьев.
11.01.2017 - 04:57: СОВЕСТЬ - Conscience -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
10.12.2016 - 06:55: СОВЕСТЬ - Conscience -> Инфоварщина от Сергея Быковского - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution