|
|
Истинное знание есть знание причин.
Френсис Бэкон
Хозяйственные процессы и конечные результаты складываются под влиянием объективных и субъективных, внешних и внутренних факторов.
Например, на величину валовой продукции непосредственное влияние оказывают такие факторы, как численность рабочих и уровень производительности труда. Субъективные или косвенные факторы — внутренние (руководство тем или иным производственным коллективом, организация производства, финансов, экономическая или организационная подготовленность исполнителей и т.д.). Следовательно, это изучение и измерение влияния факторов на величину исследуемых экономических показателей. Без всестороннего и тщательного изучения факторов невозможно сделать обоснованные выводы о результатах деятельности, выявить резервы производства, обосновать планы и управленческие решения.
Например, в модели П = ВП - С (прибыль равна выручке за минусом себестоимости) прибыль - результативный показатель, а в модели Rпр = П / РП (рентабельность продаж равна прибыли, деленной на выручку от реализации) прибыль является фактором по отношению к результативному показателю рентабельности продаж.
Различают следующие противоположные типы факторного анализа:
Факторный анализ может быть одноуровневым и многоуровневым.
Основные задачи факторного анализа:
Факторный анализ - это один из способов снижения размерности, то есть выделения во всей совокупности признаков тех, которые действительно влияют на изменение зависимой переменной. Или группировки сходно влияющих на изменение зависимой переменной признаков. Или группировки просто сходно изменяющихся признаков. Предполагается, что наблюдаемые переменные являются лишь линейной комбинацией неких ненаблюдаемых факторов. Некоторые из этих факторов являются общими для нескольких переменных, некоторые характерно проявляют себя только в одной. Те, что проявляют себя только в одной, очевидно, ортогональны друг другу и не вносят вклад к ковариацию переменных, а общие - как раз и вносят эту ковариацию. Задачей факторного анализа является как раз восстановление исходной факторной структуры исходя из наблюдаемой структуры ковариации переменных, несмотря на случайные ошибки ковариации, неизбежно возникающие в процессе снятия наблюдения.
Коэффициент взаимосвязи между некоторой переменной и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой (Factor load) данной переменной по данному общему фактору. Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору.
Процесс стохастического факторного анализа состоит из трех больших этапов:
При подготовке к факторному анализу часто (некоторые методы этого не требуют, но большая часть - требует) составляют ковариационные и корреляционные матрицы. Это матрицы, составленные из ковариации и корреляций векторов-атрибутов (строки и столбцы - атрибуты, пересечение - ковариация/корреляция).
Ковариация двух векторов:
математическое ожидание
Корреляция двух векторов:
,
- дисперсия.
Обратите внимание, что в этом случае корреляция и ковариация двух векторов - числа, так как считаются через матожидание вектора, а матожидание вектора - число.
Таким образом, мы переходим от матрицы, составленной из объектов (которые могут быть и не математическими), к матрице, оперирующей уже исключительно математическими понятиями, и абстрагируемся от объектов, уделяя внимания только атрибутам.
Метод главных компонент стремится выделить оси, вдоль которых количество информации максимально, и перейти к ним от исходной системы координат. При этом некоторое количество информации может теряться, но зато сокращается размерность.
Этот метод проходит практически через весь факторный анализ, и может меняться путем подачи на вход разных матриц, но суть его остается неизменной.
Основной математический метод получения главных осей - нахождение собственных чисел и собственных векторов ковариационной матрицы таких, что:
RV = λV, где
λ - собственное число R, R - матрица ковариации, V - собственный вектор R. Тогда :
RV − λV = 0 V(R − λE) = 0
и решение есть когда:
| R − λE | = 0,
где R - матрица ковариации, λ - собственное число R, E - единичная матрица. Затем считаем этот определитель для матрицы соответствующей размерности.
V находим, подставляя собственные числа по очереди в
V(R − λE) = 0
и решая соответствующие системы уравнений.
Сумма собственных чисел равна числу переменных, произведение - детерминанту корелляционной матрицы. Собственное число представляет собой дисперсию оси, наибольшее - первой и далее по убыванию до наименьшего - количество информации вдоль последней оси. Доля дисперсии, приходящаяся на данную компоненту, считается отсюда легко: надо разделить собственное число на число переменных m.
Коэффициенты нагрузок для главных компонент получаются делением коэффициентов собственных векторов на квадратный корень соответствующих собственных чисел.
На практике чаще всего для определения главных компонент используют итерационные методы, к примеру, NIPALS:
0. Задается 0 < ε1 < 1 - критерий окончания поиска главного компонента, и 0 < ε2 < 1 - критерий окончания поиска главных компонентов, исходная отцентрированная матрица X, i=1 - номер главной компоненты.
1. Берется - вектор-столбец, k - шаг алгоритма, j - любой столбец (просто чтобы было с чего начинать апроксимизацию).
2. Вектор Tk транспонируется.
3. Считается .
4. Pk нормируется
5. Считается новый
6. Если то и Pk - вектора весов и нагрузок соответственно для i-ой главной компоненты. Если нет, то и иди на 2.
7. .
8. Если | X | < ε, то стоп - найдены все основные компоненты, нас удовлетворяющие. Иначе i++. Иди на 1.
Вращение - это способ превращения факторов, полученных на предыдущем этапе, в более осмысленные. Бывает графическое (проведение осей, не применяется при более чем 2мерном анализе), аналитическое (выбирается некий критерий вращения, различают ортогональное и косоугольное) и матрично-приближенное (вращение состоит в приближении к некой заданной целевой матрице).
Результатом вращения является вторичная структура факторов. Первичная факторная структура (состоящая из первичных нагрузок (полученных на предыдущем этапе)) - это, фактически, проекции точек на ортогональные оси координат. Очевидно, что если проекции будут нулевыми, то структура будет проще. А проекции будут нулевыми, если точка лежит на какой-то оси. Де-факто вращение есть переход от одной системы координат к другой при известных координатах в одной системе(первичные факторы) и итеративно подбираемых координатах в другой системе (вторичных факторов).
При получении вторичной структуры стремятся перейти к такой системе координат, чтобы провести через точки (объекты) как можно больше осей, чтобы как можно больше проекции (и соответственно нагрузок) были нулевыми. При этом могут сниматься ограничения ортогональности и убывания значимости от первого к последнему факторам, характерные для первичной структуры, иВторичная структура является более простой, чем первичная, и потому более ценна.
Обозначим понятие простой структуры. Пусть r - число (общих) факторов первичной структуры , V - матрица вторичной структуры, состоящая из нагрузок (координат) вторичных факторов(строка - переменная из R, столбец - вторичный фактор).
Тогда структура будет хорошо подходить для интерпретации и будет выделяться однозначно. Наипростейшей является структура, где каждая переменная имеет факторную сложность(количество факторов, которые на нее влияют и оказывают факторную нагрузку), равную 1 (все факторы будут характерными). Реально это не достижимо, и потому мы стремимся приблизится к простой структуре при помощи различных методов. Существует эмпирическое правило, что для каждого фактора по крайней мере три переменных имеют значительную на него нагрузку.
Наиболее интересно аналитическое вращение, так как позволяет получить вторичную структуру исходя из достаточно критериев и без априорного знания о структуре факторной матрицы.
Ортогональное вращение подразумевает, что мы будем вращать факторы, но не будем нарушать их ортогональности друг другу. Ортогональное вращение подразумевает умножение исходной матрицы первичных нагрузок на ортогональную матрицу R(такую матрицу, что )
V=BR
Алгоритм ортагонального вращения в общем случае таков:
0. B - матрица первичных факторов.
1. Ищем ортогональную матрицу RT размера 2*2 для двух столбцов(факторов) bi и bj матрицы B такую, что критерий для матрицы [bibj]R максимален.
2. Заменяем столбцы bi и bj на столбцы .
3. Проверяем, все ли столбцы перебрали. Если нет, то 1.
4. Проверяем, что критерий для всей матрицы вырос. Если да, то 1. Если нет, то конец.
Формализуем понятие факторной сложности q i-ой переменной через дисперсию квадратов факторных нагрузок факторов:
где r - число столбцов факторной матрицы, bij - факторная нагрузка j-го фактора на i-ю переменную, - среднее значение. Критерий квартимакс старается максимизировать сложность всей совокупности переменных, чтобы достичь легкости интерпретации факторов (стремится облегчить описание столбцов):
Учитывая, что - константа (сумма собственных чисел матрицы ковариации) и раскрыв среднее значение (а также учтя, что степенная функция растет пропорционально аргументу), мы получим:
Этот критерий и предполагается итеративно максимизировать. Этот критерий стремится к одному генеральному фактору.
Этот критерий использует формализацию сложности фактора через дисперсию квадратов нагрузок переменной:
И тогда критерий в общем
При этом, как легко заметить, максимизируется сложность описания Факторные нагрузки могут нормироваться для избавления от влияния отдельных переменных. Дает лучшее разделение факторов, чем квартимакс.
Можно обобщить два вышеприведенных критерия и получить новый:
Max = αQ + βV
Запишем его в следующем виде: Тогда при γ = 0 это квартимакс, при γ = 1 - варимакс, а при - эвримакс, а при γ = 0,5 биквартимакс.
Косоугольное вращение не требует ортогональности между факторами. В остальном его алгоритм похож на ортогональное вращение. За счет этого можно получать больше нулей в факторных нагрузках и получать более характерные факторы. Правда, при этом возникает корреляция между факторами, что вообще не очень хорошо и приходится объяснять факторами 2го порядка. Их, кстати, тоже можно вычислить, причем используя ортогональное вращение и косоугольные факторы как исходные данные.
На основе квартимакса создается критерий квартимин:
где aij и aij - проекции на j-ю и k-ю оси. При применении ортогонального вращения этот критерий сводится к квартимаксу. При наипростейшей структуре N=0, а реально должно к нему стремится.
На основе варимакса создается критерий коваримин:
Минимизируется ковариация квадратов проекции на различные оси.
Объединение их, как и в ортогональном вращении, приводит к критерию облимин:
Используется критерий облимин, только при этом в качестве аргументов выступают нагрузки факторов первичной структуры:
d регулирует косоугольность решения, меньшие отрицательные d - больше ортогональность