к оглавлению

Микроэлектронные функциональные цифровые узлы комбинационного типа

Интегральные логические элементы являются основой для построения цифровых устройств, выполняющих более сложные операции и относящихся к классу комбинационных устройств.

Основные из них: дешифраторы и шифраторы; мультиплексоры и демультиплексоры; двоичные сумматоры; цифровые компараторы и мажоритарные элементы; преобразователи кодов и др.

СУММАТОРЫ

Сумматоры - это цифровые функциональные устройства, предназначенные для выполнения операции сложения чисел, представленных в различных кодах.

По характеру действия сумматоры подразделяются на комбинационные, не имеющие элементов памяти, и накапливающие – запоминающие результаты вычислений при снятии входных сигналов.

В дальнейшем будут рассматриваться только комбинационные сумматоры, на основе которых выполняется большинство суммирующих ИС.

Сумматор по модулю два - Это устройство с двумя входами (а и b), на выходе у которого сигнал "1" появляется только в том случае, когда на входах действуют противоположные сигналы, т. е. "0" и "1". Сумматор не обладает памятью.

Eго таблица истинности и логическое уравнение имеют вид:

Название “по модулю два” этот сумматор получил потому, что y соответствует значению младшего разряда при суммировании одноразрядных двоичных чисел A и B. Построим в базисе И–НЕ схему сумматора по модулю два (рис. 21)

Рис. 21. Реализация сумматора по модулю два:

а – принципиальная схема; б – функциональная схема

Полусумматор - Обеспечивает операцию сложения двух одноразрядных двоичных чисел a и b. Так как при a = 1 и b = 1 получается перенос единицы в следующий разряд, полусумматор должен иметь два выхода: с одного снимается сигнал суммы по модулю два, а с другого - сигнал переноса.

Таблица истинности полусумматора и его логические уравнения имеют вид:

P' = ab

Реализация полусумматора в базисе И–НЕ представлена на рис. 22

а                                     б

Рис. 22. Схема полусумматора:

а – реализация в базисе И–НЕ; б – условное обозначение

Условное обозначение полусумматора на схемах – HS (halfsum – полусумма), а полного сумматора – SM.

Полный сумматор - Это устройство для сложения трех одноразрядных двоичных чисел a, b, c, где c - сигнал переноса из предыдущего младшего разряда. Имеет два выхода S (сумма) и Р (перенос).

Полный сумматор можно построить из двух полусумматоров (рис. 23), отсюда и название – полусумматор, используя следующие логические уравнения

Рис. 23. Полный сумматор

На основе полного сумматора можно построить суммирующие устройства параллельного или последовательного действия для сложения многоразрядных двоичных чисел.

В цифровой схемотехнике операцию вычитания обычно заменяют сложением уменьшаемого с вычитаемым, представленным в дополнительном коде, поэтому вычитатели могут быть выполнены на основе сумматоров.

Дешифраторы, шифраторы, преобразователи кодов

Дешифратор - Комбинационное устройство, позволяющее преобразовать n-разрядный двоичный код в позиционный 2n-разрядный код. Имеет n входов и 2n или меньше выходов. В зависимости от входного набора сигнал 1 появится только на одном определенном выходе, а на всех остальных выходах будут сигналы 0.

Таблица истинности полного дешифратора на три входа имеет вид (табл.4):

Логические функции выходов дешифратора:

По способу реализации дешифраторы могут быть линейные, прямоугольные и пирамидальные.

Более совершенными являются пирамидальные дешифраторы, относящиеся к многоступенчатым структурам и содержащие ряд логических элементов для выделения общих частей функций.

В ниже следующей таблице дана сравнительная оценка линейных, пирамидальных и прямоугольных дешифраторов по аппаратным затратам NЛЭ в пересчете на 2-входные ЛЭ для m-разрядного входного кода (табл. 5).

Как видно из таблицы 5, преимущества многоступенчатых дешифраторов заметно нарастают с увеличением m. В специализированных ИС тем не менее предпочтение часто отдают более простым линейным (одноступенчатым) дешифраторам, обладающим к тому же повышенным быстродействием.

Шифратор - Комбинационное устройство, преобразующее управляющий сигнал на одном из входов в соответствующий двоичный код.

Для шифратора на четыре входа и два выхода, например, логические уравнения в ДНФ, полученные из таблицы, будут следующими:

Наибольшее применение шифраторы находят в цифровых устройствах ввода информации с пультов управления для преобразования десятичных чисел в двоичный код. При нажатии на клавишу на один их входов шифратора подается логическая единица (на остальные – логические нули), на выходе формируется соответствующий двоичный код.

Условное обозначение дешифратора и шифратора приведено на рис. 24:

а                                 б

Рис. 24. Условное обозначение:

а – дешифратор; б – шифратор

Преобразователи кодов - Это устройства для автоматического изменения по заданному алгоритму соответствия между входным и выходным кодами без изменения их смыслового содержания.

По другому, преобразователь кода представляет собой устройство с m входами и n выходами, взаимно и однозначно преобразующее входные слова из некоторого алфавита {X1, X2, …, Xp} и выходные слова другого алфавита {Y1, Y2, …, Yu }.

Задача преобразования кодов возникает прежде всего в связи с необходимостью сведения цифровых устройств с разнообразными способами кодирования в единую систему.

Для преобразования параллельных двоичных кодов можно построить достаточно простые преобразователи на комбинационных логических схемах. Однако на практике это часто осуществляется алгоритмическим путем, используя запоминающие устройства.

Мультиплексоры, демультиплексоры

Демультиплексор - (распределитель) устройство, передающее сигнал, поступивший на его вход x, на один из S выходов в зависимости от управляющего сигнала (УС), заданного двоичным кодом.

Структура демультиплексора имеет вид (рис. 25):

Рис.25. Структура демультиплексора

Демультиплексоры по своей логике работы близки к дешифраторам. Если на вход x подать логическую единицу, то показанный на рис. 25 демультиплексор превращается в дешифратор. Поэтому некоторые промышленно выпускаемые дешифраторы могут выполнять функции демультиплексоров.

Мультиплексор - Устройство для коммутации информации, поступающей по нескольким входным каналам, на один выходной канал в зависимости от управляющего сигнала, заданного двоичным кодом.

Рис. 26. Условное обозначение мультиплексора

Если мультиплексор имеет n-разрядный управляющий сигнал, то количество коммутируемых входов – 2n (рис. 26).

Цифровые компараторы

Компаратор - устройство сравнения кодов чисел

В общем случае компаратор параллельных кодов двух m-разрядных двоичных чисел представляет собой комбинационную схему с 2m входами и тремя выходами (“равно”, “больше”, “меньше”). При поступлении на входы кодов двух сравниваемых чисел сигнал логической единицы появляется только на одном из выходов. В некоторых случаях компаратор может иметь менее трех выходов.

Одноразрядный компаратор имеет два входа на которые одновременно поступают одноразрядные двоичные числа x1 и x2, и три выхода (=, >, <).

Из таблицы истинности логические уравнения компаратора при сравнении x1 с x2 получаются в виде

Реализация такого компаратора в базисе И–НЕ приводит к следующей схеме (рис. 27):

Многоразрядные компараторы обычно выполняют на базе одноразрядных. При этом используется принцип последовательного сравнения разрядов многоразрядных чисел, начиная с их старших разрядов, так как уже на этом этапе, если x1m 4>№ x2m, задача может быть решена однозначно, и сравнение следующих за старшими разрядов не потребуется.

Рис. 27. Одноразрядный компаратор двоичных чисел

далее

к оглавлению


Знаете ли Вы, что, как не тужатся релятивисты, CMB (космическое микроволновое излучение) - прямое доказательство существования эфира, системы абсолютного отсчета в космосе, и, следовательно, опровержение Пуанкаре-эйнштейновского релятивизма, утверждающего, что все ИСО равноправны, а эфира нет. Это фоновое излучение пространства имеет свою абсолютную систему отсчета, а значит никакого релятивизма быть не может. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 29.11.2020 - 09:10: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
29.11.2020 - 09:04: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
29.11.2020 - 09:03: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
29.11.2020 - 09:01: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
29.11.2020 - 09:01: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
29.11.2020 - 08:58: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
28.11.2020 - 15:48: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Юрия Воробьевского - Карим_Хайдаров.
28.11.2020 - 11:37: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ЗА НАМИ БЛЮДЯТ - Карим_Хайдаров.
28.11.2020 - 11:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Аманды Вольмер - Карим_Хайдаров.
28.11.2020 - 09:04: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
27.11.2020 - 21:02: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
27.11.2020 - 20:57: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Амары Ельской - Карим_Хайдаров.

Bourabai Research - Технологии XXI века Bourabai Research Institution