к оглавлению

Элементная база цифровых систем
Принципы построения ключевых схем

В цифровой электронике ключевая схема предназначена для коммутации (переключения) тока в нагрузке или создания двух резко отличающихся уровней напряжения на нагрузке, соответствующих логическому нулю и логической единице.

Ключевая схема на биполярном транзисторе

В интегральных микросхемах выполненных на биполярных транзисторах роль ключа выполняет транзистор, включенный по схеме с общим эмиттером (рис. 9).


а                                                 б

Рис.9. Ключевая схема на биполярном транзисторе: а- принципиальная схема; б – вольт/амперная характеристика (ВАХ) ключа

Управление состоянием ключа осуществляется сигналом Uвх. При Uвх = 0 соответственно Iб = 0 и состояние схемы определяется точкой B на ВАХ ключа. Транзистор находится в состоянии отсечки, что эквивалентно разомкнутому ключу, а выходное напряжение Uвых равно Uкэ отс, т. е. несколько меньше, чем Eк. Ток через транзистор Iко в этом случае пренебрежительно мал.

При Uвх, достаточном для создания базового тока Iб нас, переводящего транзистор в режим насыщения, состояние схемы определяется точкой А на ВАХ, что равносильно замкнутому ключу. Выходное напряжение равно Uкэ нас, т.е. несколько выше нулевого уровня, а ток через транзистор Iк нас максимален и равен .

Оценим энергетические затраты в ключевой схеме:

  1. В режиме отсечки мощность, выделяемая на транзисторе и вызывающая его нагревание, определяется выражением
  2. Pотс = Iко Ч Uкэ отс .

    Вследствие крайней малости Iко, мощность Pотс значительно меньше допустимой величины.

  3. В режиме насыщения мощность Pнас = Iк нас Ч Uкэ нас. Так как Uкэ нас мало, Pнас также находится в допустимых пределах.
  4. Более подробно рассмотрим процесс переключения – процесс перехода ключа из одного состояния в другое.

Так как переключение транзистора происходит не мгновенно, а в течение времени t ф, ток iк(t) и напряжение Uкэ(t) достигают относительно высоких величин. На переключение транзистора затрачивается энергия

Допустив, что ток iк(t) за время переключения изменяется по линейному закону, т.е. iк(t)=Iнас Ч t/t ф, и, считая, что Rк, Eк известны, получим

.

 

Тогда с учетом

Если транзистор ключа переключается с частотой f, то мощность, выделяемая на нем, будет равна

,

где – период переключения.

В этом случае, в зависимости от частоты переключения и режимов работы ключа, Pперекл. может достигать значительных величин.

Идеализированная временная диаграмма работы ключа приведена на рис. 10.

Анализ временной диаграммы работы ключевой схемы (рис. 9) показывает, что для статистического режима если Uвх – низкий потенциал, то Uвых – высокий, и наоборот. Следовательно, простейшая ключевая схема на транзисторе с нагрузкой в цепи коллектора, с которого снимается выходное напряжение, является инвертором, реализующим функцию НЕ как в положительной, так и в отрицательной логике.

Рис. 10. Идеализированная временная диаграмма работы ключа

Ключевая схема на полевых транзисторах

Ключевые схемы на полевых транзисторах имеют следующие преимущества перед биполярными:

Схемотехнически полупроводниковые ключи на биполярном и полевом транзисторе практически идентичны.

Однако в интегральной схемотехнике в качестве нагрузочного резистора R используется МДП-транзистор того же типа, что и транзистор, выполняющий роль ключа (рис. 11).

Рис. 11. Ключевая схема на МДП-транзисторах

Это позволяет сократить число технологических операций при изготовлении микросхем. Чтобы транзистор Т2 выполнял роль резистора необходимо обеспечить постоянно открытое состояние его канала. Для этого затвор транзистора Т2 соединяют с его стоком.

Ключевая схема на комплементарных транзисторах

В рассмотренных ключевых схемах существенным недостатком является протекание тока через сопротивление Rк как в открытом, так и в закрытом состояниях и, как следствие его значительное нагревание.

Этого недостатка лишен инвертор на комплементарных (взаимодополняющихся) МДП-транзисторах (рис. 12).

Рис. 12. Комплементарный МДП-транзисторный ключ

Схема построена на двух транзисторах Т1 и Т2 с одинаковыми характеристиками, но с каналами разных типов проводимости. Схема симметрична: когда один из транзисторов выполняет роль замкнутого ключа, то другой служит нагрузочным сопротивлением и наоборот.

В положительной логике и при положительной полярности напряжения питания при подаче на вход схемы логического 0 (Uвх 0 В) транзистор Т1 будет заперт, а транзистор Т2 оказывается в режиме глубокого насыщения и через него потенциал +Е поступает на выход, реализуя на выходе логическую 1. Сквозной ток протекающий через оба последовательно соединенных транзистора практически равен нулю, так как сопротивление закрытого транзистора Т1 очень велико.

Если на вход ключа подана логическая 1, то состояния транзисторов меняется на противоположное и через открытый транзистор Т1 на выход будет подан нулевой потенциал корпуса Uвых 0 В, реализуя логический 0. При этом сквозной ток по прежнему останется близким к нулю вследствие большого сопротивления запертого транзистора Т2.

Таким образом, в статическом состоянии схема практически не потребляет мощности от источника питания.

В режиме переключения имеется некоторый интервал входных сигналов при которых открыты оба транзистора и сквозной ток может достигать значительных величин. Однако для КМДП-ключей типичны низкие напряжения питания, так что заметного возрастания тока во время переключения обычно не происходит.

Переключатель тока (эмиттерно-связанная логика, ЭСЛ)

Переключателем тока называют симметричную схему (рис. 12.), в которой заданный ток I0 протекает через ту или иную ее ветвь в зависимости от потенциала Uвх на одном из входов. На втором входе поддерживается некоторое неизменное опорное напряжение Uоп.


а                                                 б

Рис. 13. Переключатель тока: а – электрическая схема;

б – временная диаграмма его работы

Опорное напряжение Uоп равно промежуточному значению между напряжениями высокого (В) и низкого (Н) уровней выходного напряжения.

Так как эмиттеры транзисторов соединены между собой, то падение напряжения Uэ прикладывается одновременно к базам Т1 и Т2

Если на вход переключателя подан высокий уровень (В) т. е. Uвх = Uоп + d , то транзистор Т1 будет открытым, так как на его базе будет прямое напряжение Ud э1 = Uвх – Uэ > 0, а Т2 закрыт (Ud э2 = Uоп – Uэ < 0). Каждая из ветвей переключателя представляет собой инвертор, поэтому на выходе Uвых1 будет низкий потенциал, на выходе Uвых2 – высокий.

Если на вход подан низкий уровень (Н), т. е. Uвх = Uоп – d , то откроется Т2, а Т1 закроется. Обычно величины п d п = 0,1 … 0,5 В достаточно для перевода схемы из одного состояния в другое, сохраняя активный режим открытого транзистора.

Таким образом особенность переключателей тока состоит в использовании ненасыщенного режима работы транзисторов, что обеспечивает их повышенное быстродействие и по той же причине повышенные энергетические затраты в статическом режиме.

далее

к оглавлению


Знаете ли Вы, что релятивистское объяснение феномену CMB (космическому микроволновому излучению) придумал человек выдающейся фантазии Иосиф Шкловский (помните книжку миллионного тиража "Вселенная, жизнь, разум"?). Он выдвинул совершенно абсурдную идею, заключавшуюся в том, что это есть "реликтовое" излучение, оставшееся после "Большого Взрыва", то есть от момента "рождения" Вселенной. Хотя из простой логики следует, что Вселенная есть всё, а значит, у нее нет ни начала, ни конца... Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 24.11.2020 - 20:37: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
24.11.2020 - 20:36: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
24.11.2020 - 20:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
24.11.2020 - 20:35: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
24.11.2020 - 18:40: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
24.11.2020 - 18:14: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА - Карим_Хайдаров.
24.11.2020 - 16:41: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
24.11.2020 - 16:40: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
24.11.2020 - 16:40: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Васильевича Квачкова - Карим_Хайдаров.
24.11.2020 - 11:32: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
24.11.2020 - 11:31: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
22.11.2020 - 18:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Николаевича Боглаева - Карим_Хайдаров.

Bourabai Research - Технологии XXI века Bourabai Research Institution