к оглавлению

Инструментальные аналоговые и цифровые интегральные микросхемы

Рассматриваемые в данной главе функциональные микроэлектронные устройства нельзя однозначно отнести только к аналоговым или только к цифровым. У таких изделий или их выходные сигналы являются цифровыми и наоборот, или они управляются цифровыми сигналами. В зависимости от выполняемых функций этот тип функциональных узлов относится к аналого-цифровым (АЦП) либо к цифро-аналоговым (ЦАП) преобразователям.

1. Цифро–аналоговые интегральные преобразователи

Цифро-аналоговые преобразователи предназначены для создания выходной аналоговой величины, соответствующей цифровому коду, поступившему на вход преобразователя.

Простейший ЦАП можно построить на основе ОУ с весовыми резисторами на входе (рис. 83). Каждый из аналоговых ключей K0 … KN -1 может находиться в одном из двух состояний: закрытом или открытом.

Рис. 83. Простейший ЦАП с весовыми резисторами на входе

Сопротивление резисторов соседних разрядов отличаются в 2 раза. Выходное напряжение ЦАП является функцией полного сопротивления резистивной матрицы которое в свою очередь определяется состояниями ключей, т. е.:

, где

, a K = [1, 0].

Выбрав Eon, R, Roc таким, чтобы было справедливо равенство

получим ЦАП имеющий 2N состояний.

Точность такого преобразователя определяется разбросом и стабильностью параметров резисторов матрицы, аналоговых ключей, ОУ. При большой разрядности ЦАП технологически очень трудно выполнить резисторы с перепадом сопротивлений в 2N -1 раза. Технологически удобно изготовлять резисторы по возможности с одинаковыми сопротивлениями. В этом случае необходимый коэффициент передачи эталонного напряжения формируется с помощью многозвеньевого делителя напряжения на основе матрицы сопротивлений типа R – 2R рис. 84.

Рис. 84. ЦАП с резистивной матрицей типа R – 2R

Такая схема имеет коэффициент использования эталонного напряжения равный 2/3 в то время как в предыдущей этот коэффициент равен 1.

Однако, несмотря на этот недостаток и на большее число элементов схемы, резистивная матрица типа R – 2R имеет преимущество как более технологичная.

В рассмотренных схемах ЦАП время выполнения операции преобразования определяется быстродействием ключевых схем и переходными процессами в резистивных цепях, обусловленными наличием паразитных емкостей. Второй фактор для этих схем является основным, так как значения сопротивлений обычно выбирают довольно большими, что бы пренебречь погрешностями, вносимыми конечным сопротивлением электронных ключей. С этой точки зрения схема (рис. 84) обладает более низким быстродействием, так как содержит больше паразитных емкостей и в ней используется многозвенный принцип передачи напряжения.

В рассмотренных схемах ЦАП в качестве ключей используются аналоговые коммутаторы, как на биполярных, так и на полевых транзисторах. Главным требованием, предъявляемым к таким ключам является их низкое, стабильное во времени сопротивление в открытом состоянии.

Параметры ЦАП

Характеристика преобразования (ХП). При подаче на вход ЦАП цифровых двоичных комбинаций, управляющих состояниями ключей и меняющихся от 0 до, 2N – 1 , на его выходе появится ступенчато нарастающее напряжение. Высота каждой ступени соответствует шагу квантования D Uкв. Так как D Uкв определяет минимальное значение выходное напряжения аналогового сигнала

D Uвых min = D Uкв,

при выборе его значения необходимо учитывать также шумовые факторы, погрешности усиления масштабирующих усилителей.

Относительная разрешающая способность определяется как величина обратная числу уровней квантования

Абсолютная разрешающая способность – численно равна шагу квантования

,

где D Uпш – напряжение полной шкалы, соответствующее максимальному выходному напряжению, 2N – 1 – количество ступеней квантования.

Абсолютная погрешность преобразования dпш показывает максимальное отклонение выходного напряжения в конечной точке реальной характеристики преобразования от выходного напряжения в конечной точке идеальной характеристики преобразования (рис. 86).

Рис. 86. Погрешности преобразования ЦАП

Абсолютная погрешность преобразования оценивается в процентах или долях единицы младшего разряда (ЕМР). ЕМР – среднее значение ступени квантования по всей характеристике преобразования.

Нелинейность преобразования ЦАП dлн определяет максимальное отклонение реальной ХП от идеальной и оценивается также в долях ЕМР.

Дифференциальная нелинейность преобразования ЦАП – dдиф.лн численно равна максимальной разности двух соседних шагов квантования.

dдиф.лн = D Uвых 2 – D Uвых 1

Дифференциальная нелинейность также оценивается в долях ЕМР.

Время установления tуст выходного напряжения или тока – интервал времени от начала изменения выходного двоичного кода от минимального до максимального значения до момента когда выходной аналоговый сигнал достигнет заданной величины.

Максимальная частота преобразования fпр – наибольшая частота смены входных кодовых наборов.

В табл. 17 приведены типичные параметры некоторых современных микросхем ЦАП компании Dallas Semiconductor (фирма Maxim).

2. Аналоговые компараторы напряжения

Компараторы являются одним из основных узлов любого аналого-цифрового преобразователя и во многом определяют его параметры. Компаратор осуществляет сравнение входного напряжения Uвх с пороговым значением Uпор и формирует выходной логический сигнал 1 или 0 зависимости от знака разности сравниваемых сигналов.

Основными параметрами компараторов являются чувствительность и быстродействие.

Под чувствительностью, или разрешающей способностью, понимают минимальную разность входных аналоговых сигналов, при которой компаратор изменяет свое состояние по выходу. Разрешающая способность реального компаратора (рис. 87) является функцией

коэффициента усиления и величины логического перепада выходного напряжения.

а             б

Рис. 87. Схема простейшего компаратора – а; временная диаграмма компаратора – б

Основой компаратора обычно являются операционные усилители. Компаратор, представленный на рис. 87, позволяет сравнивать сигналы одинаковой полярности. Для приведения уровней выходных напряжений к стандартам цифровых схем используются специальные формирующие цепи. Для уменьшения времени переключения в компараторах применяют положительные обратные связи.

На основе ранее рассмотренных типовых включений ОУ реализуется большое количество схем компараторов различного назначения.

3. Аналого-цифровые преобразователи

Аналого-цифровой преобразователь (АЦП) – устройство, преобразующее значение непрерывной аналоговой величины в эквивалентный ей цифровой код.

3.1 Временная дискретизация непрерывных сигналов

Процедура преобразования непрерывных сигналов в цифровую форму состоит из двух этапов: дискретизации сигналов по времени и квантования по амплитуде. Наиболее важным с точки зрения вносимых погрешностей преобразования является первый этап.

Временная дискретизация непрерывного сигнала заключается в накоплении его отсчетов, взятых через некоторый постоянный или изменяющийся интервал времени T , называемый периодом дискретизации (рис. 88).

Для того чтобы функция U*(t) полностью отображала U(t), необходимо определенным обра-зом выбирать T и t .

Согласно теореме Найквиста-Котельникова непрерывный сигнал U(t) с максимальной частотой в спектре fВ полностью описывается выборочными значениями U(nT), взятыми через интервал времени

, т. е.

.

Так как все реальные сообщения (сигналы) имеют практически безграничный спектр, то T выбрать можно лишь приблизительно. Поэтому дескретизированный сигнал отображает исходный непрерывный с некоторой точностью, зависящей от T.

На практике интервал дискретизации T, полученный исходя из выше приведенных соображений, уменьшают в 2…5 раз.

В процессе аналого-цифрового преобразования, который длится некоторое время Дta = t2 – t1 (рис. 89.), сигнал (переменный) изменяет свое значение на некоторую величину ДUa .

Интервал времени Дta = ф называют аппертурным временем, а величину ДUa – аппертурной ошибкой:

.

Кроме того, значение двоичного кода, полученное в момент времени t2 не будет соответствовать значению сигнала в момент времени t1, с которым этот код отождествляют.

Оценим величину аппертурной ошибки в зависимости от аппертурного времени на примере гармонического сигнала U0 sin щ0 t.

Максимальная производная синусоидального сигнала равна:

Откуда

ДUa max = U0 щ0Дta .

Если потребовать, чтобы ДUmax не превышала единицы младшего разряда (в двоичном коде), то для N–разрядного АЦП должно выполняться условие:

,

 

где U0 = 2N , ДUmax = 1.

Полученное выражение позволяет оценить требуемое аппертурное время АЦП при преобразовании сигнала с щВ = щ0 при заданной ошибке преобразования как

.

Проведем сравнительный анализ величин Дta и T. Из теоремы Котельникова следует, что

, а ,

тогда

Полученные ограничения на Дta предъявляют очень жесткие требования к быстродействию АЦП. В быстродействующих АЦП данная проблема решается путем применения устройств выборки-хранения (УВХ). УВХ запоминают уровень преобразуемого сигнала в точке t1 (рис. 89) и хранит этот уровень до момента t2 . Это позволяет существенно уменьшить аппертурную ошибку, а аппертурное время АЦП увеличить до величины практически равной интервалу дискретизации.

3.2 Структура микроэлектронных АЦП

В полупроводниковых АЦП наибольшее распространение получили три известных принципа преобразования:

АЦП последовательного счета

Простейший АЦП данного типа и его временная диаграмма представлены на рис. 90.

АЦП состоит из компаратора, ЦАП, двоичного счетчика, выходного буферного регистра. После команд СБРОС и ПУСК, подаваемых на АЦП, импульсы тактового генератора начинают увеличивать показания счетчика, а, следовательно, и выходной сигнал ЦАП Ч(t) ступеньками по Дx. Компаратор определяет разницу между Ч и Б. Если окажется, что Ч – Б > 0, компаратор вырабатывает сигнал СТОП, счетчик останавливается и индицирует двоичный код, эквивалентный входному сигналу Uвх = Б. Недостатком такой схемы АЦП является ее низкое быстродействие, зависящее от величины входного сигнала.

а               б

Рис. 90. Структура АЦП последовательного счета – а, временная диаграмма – б

Например, пусть fT = 10 мГц и число разрядов счетчика N = 12. Максимальное число импульсов заполнения счетчика , тогда максимальная частота отсчетов входного сигнала составит Fотсч ≤ fT/K ≈ 107/(4 · 103) = 2,5 · 103 Гц, а высшая частота в спектре входного сигнала не может превысить Fв ≤ 1,25 · 103 Гц.

АЦП последовательного приближения

Упрощенная схема АЦП последовательного приближения приведена на рис.91.

После пуска схемы первым тактовым импульсом регистр памяти (РП) устанавливает старший разряд ЦАП в единицу. При этом, если Uвх > UЦАП, то компаратор подтверждает состояние РП и ЦАП. Следующим тактовым импульсом единица устанавливается в следующим за старшим разряде. Если окажется, что Uвх < UЦАП , последняя установленная в ЦАП единица заменяется компаратором на ноль, и очередная единица записывается в последующий разряд. Описанные выше действия повторяются до N-го младшего разряда. Таким образом, после N тактов сравнения Uвх и UЦАП, в регистре памяти сформируется N-разрядный двоичный код, который является цифровым эквивалентом входного аналогового сигнала.

Рис. 91. Схема АЦП последовательного приближения

В такой структуре АЦП полное время преобразования составит N · ДT, где ДT длительность одного такта.

При той же частоте тактового генератора fT = 10 мГц и разрядности ЦАП N = 12 преобразование будет выполнено за 12 периодов fT, т. е. частота отсчетов входного сигнала достигнет Fотсч = fT/12 = 107/12 = 830 кГц, а высшая частота преобразуемых сигналов FВ ≈ 400 кГц.

АЦП параллельного преобразования

Повысить скорость преобразования в АЦП можно используя параллельный набор возможных значений эталонного напряжения вместо их последовательного чередования, характерного для обоих рассмотренных выше принципов преобразования.

Упрощенная структура АЦП параллельного преобразования приведена на рис. 92.

Основным элементом N-разрядного АЦП являются 2N – 1 компараторов напряжения. На один из двух входов каждого компаратора подается свое опорное напряжение, формируемое резистивной матрицей. Разность между опорными напряжениями двух соседних компараторов равна Um / 2N–1. Другие входы объединены, и на них подается входной сигнал. На выходах компараторов устанавливаются напряжения нуля или единицы, соответствующие сигналам на входах компараторов в момент прихода фронта тактового импульса.

После окончания импульса опроса в компараторах хранится информация о мгновенном значении входного сигнала, представленная в виде (2N – 1) -разрядного слова. Дешифратор представляет это слово в виде N-разрядного кода, который хранится в буферном регистре.

Поскольку каждая из 2N – 1 градаций входного сигнала оцифровывается отдельным компаратором, то время преобразования в таком АЦП определяется временем переключения компаратора и является минимально возможным.

Рис. 92. Структура АЦП параллельного преобразования

 

Параметры ЦАП

Статические параметры АЦП во многом по смыслу аналогичны статическим параметрам ЦАП и рассмотрены в предыдущих параграфах.

Среди динамических параметров АЦП основными являются:

Параметры некоторых наиболее типичных микроэлектронных АЦП компании Dallas Semicondfctor (фирмы Maxim )приведены в табл. 18.

далее

к оглавлению


Знаете ли Вы, что такое "усталость света"?
Усталость света, анг. tired light - это явление потери энергии квантом электромагнитного излучения при прохождении космических расстояний, то же самое, что эффект красного смещения спектра далеких галактик, обнаруженный Эдвином Хабблом в 1926 г.
На самом деле кванты света, проходя миллиарды световых лет, отдают свою энергию эфиру, "пустому пространству", так как он является реальной физической средой - носителем электромагнитных колебаний с ненулевой вязкостью или трением, и, следовательно, колебания в этой среде должны затухать с расходом энергии на трение. Трение это чрезвычайно мало, а потому эффект "старения света" или "красное смещение Хаббла" обнаруживается лишь на межгалактических расстояниях.
Таким образом, свет далеких звезд не суммируется со светом ближних. Далекие звезды становятся красными, а совсем далекие уходят в радиодиапазон и перестают быть видимыми вообще. Это реально наблюдаемое явление астрономии глубокого космоса. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 23.11.2020 - 09:52: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
23.11.2020 - 09:51: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
23.11.2020 - 09:51: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
22.11.2020 - 18:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
22.11.2020 - 18:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Николаевича Боглаева - Карим_Хайдаров.
22.11.2020 - 17:42: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
22.11.2020 - 17:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
22.11.2020 - 16:31: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
21.11.2020 - 23:42: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
21.11.2020 - 21:05: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
21.11.2020 - 21:04: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.
21.11.2020 - 18:49: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.

Bourabai Research - Технологии XXI века Bourabai Research Institution