Электромагнетизм   к оглавлению EWB  

Индуктивные элементы

фото катушка индуктивности

Индуктивные элементы делятся на катушки индуктивности и трансформаторы [45,46].

По назначению катушки индуктивности можно разделить на четыре группы:

а) катушки контуров,

б) катушки связи,

в) дроссели высокой частоты и

г) дроссели низкой частоты.

По конструктивному признаку катушки могут быть разделены на однослой-ные и многослойные; цилиндрические, спиральные и тороидальные; экранированные и неэкранированные; катушки без сердечников и катушки с сердечниками и др.

Катушки индуктивности характеризуются следующими основными параметрами: индуктивностью и точностью, добротностью, собственной емкостью и стабильностью.

Однослойные катушки применяются на частотах выше 1500 кГц. Намотка может быть сплошная и с принудительным шагом. Однослойные катушки с принудительным шагом отличаются высокой добротностью (Q=150...400) и стабильностью;

применяются в основном в контурах коротких (KB) и ультракоротких (УКВ) волн [47]. Высокостабильные катушки, применяемые в контурах гетеродинов на KB и УКВ, наматываются при незначительном натяжении проводом, нагретым до 80...120°С.

Для катушек с индуктивностью выше 15... 20 мкГн применяется сплошная од-нослойная намотка. Целесообразность перехода на сплошную намотку определяется диаметром катушки. Ориентировочные значения индуктивности, при которых целесообразен переход на сплошную намотку:

Диаметр каркаса (в мм) 6 10 15 20 25 Индуктивность (в мкГн) 1,8 4 10 20 30

Катушки со сплошной намоткой также отличаются высокой добротностью и широко используются в контурах на коротких, промежуточных и средних волнах, если требуется индуктивность не выше 200... 500 мкГн. Целесообразность перехода на многослойную намотку определяется диаметром катушки. Ориентировочные значения индуктивности, при которых целесообразен переход на многослойную намотку:

Диаметр каркаса (в мм) 10 15 20 25 30 Индуктивность (в мкГн) 30 50 100 200 500

Индуктивность однослойной катушки рассчитывается по формуле:

L=0,01DN2/(1/D+0.44), где L — индуктивность (в мкГн), D — диаметр катушки (в см), 1 — длина намотки (в см), N — число витков.

Добротность однослойных катушек определяется в основном диаметром провода и шагом намотки (расстоянием между витками) х. Установлено [47], что на высоких частотах оптимальное значение диаметра намоточного провода определяется из выражения: d=0,707x.

Многослойные катушки разделяются на простые и сложные. Примерами простых намоток являются рядовая многослойная намотка и намотка "кучей" (или вна-вал). Несекционированные многослойные катушки с простыми намотками отличаются пониженной добротностью и стабильностью, большой собственной емкостью, требуют применения каркасов. Индуктивность многослойной катушки рассчитывается по формуле: L=0,08(DN)2/(ЗD+91+10t), где L — индуктивность катушки, мкГн; D — средний диаметр намотки, см; 1 — длина намотки, см; t — толщина катушки, см; N — число витков.

Если задана индуктивность и нужно рассчитать число витков, то следует задать величины D, 1 и t и подсчитать необходимое число витков. После этого следует произвести проверку толщины катушки по формуле: t=zNd2/1, где d — диаметр провода с изоляцией (в мм), z=l,05...1,3 — коэффициент неплотности намотки при d=1...0,08 соответственно.

Секционированные катушки индуктивности характеризуются достаточно высокой добротностью, пониженной собственной емкостью, меньшим наружным диаметром и допускают в небольших пределах регулировку индуктивности путем смещения секций. Они применяются как в качестве контурных в контурах длинных и средних волн, так и в качестве дросселей высокой частоты. Каждая секция представляет собой обычную многослойную катушку с небольшим числом витков. Число секций может быть от двух до восьми, иногда даже больше. Расчет секционированных катушек сводится к расчету индуктивности одной секции. Индуктивность секционированной катушки, состоящей из п секций: L= Lc[n+2k(n-l)], где Lс — индуктивность секции, k — коэффициент связи между смежными секциями (k=0,3 при расстоянии между секциями, равном половине ширины секции, которая равна среднему радиусу катушки).

Собственная емкость катушки понижает добротность и стабильность настройки контуров. В диапазонных контурах эта емкость уменьшает коэффициент перекрытия диапазона. Величина собственной емкости определяется типом намотки и размерами катушки. Наименьшая собственная емкость (несколько пФ) у однослой-ных катушек, намотанных с принудительным шагом. Многослойные катушки обладают большей емкостью, величина которой зависит от способа намотки. Так, емкость катушек с универсальной намоткой составляет 5...25 пФ, а с рядовой многослойной намоткой может быть выше 50 пф.

Дросселем высокой частоты называют катушки индуктивности, используемые в цепях питания в качестве фильтрующих элементов. Индуктивность дросселя должна быть достаточно большой, а собственная емкость — малой. Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек. Для дросселей длинных и средних волн применяется секционированная многослойная намотка. Дроссели для коротких волн и для метровых волн обычно имеют однослойную намотку — сплошную или с принудительным шагом. В качестве каркаса часто используются керамические стержни от резисторов. Расчет числа витков дросселя производится так же, как и расчет числа витков катушек индуктивности.

В катушках с большой индуктивностью применяются сердечники из ферромагнитных материалов. Индуктивность катушки с замкнутым стальным сердечником L=0.0126MSN2/Ic [мкГн], где ц — магнитная проницаемость материала (для электротехнических сталей находится в диапазоне 200...500), S — сечение сердечника (в см2), N — число витков катушки, Iс — средняя длина магнитного пути, см (например, для круглого сердечника — длина его средней окружности).

Электромагнетизм   к оглавлению EWB  


Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАФорум Рыцари теории эфира
Рыцари теории эфира
 17.09.2019 - 05:51: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ФАЛЬСИФИКАЦИЯ ИСТОРИИ - Карим_Хайдаров.
17.09.2019 - 05:41: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Андрея Тиртхи - Карим_Хайдаров.
16.09.2019 - 18:21: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
16.09.2019 - 03:11: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
14.09.2019 - 18:23: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
13.09.2019 - 09:08: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
12.09.2019 - 17:47: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
12.09.2019 - 16:47: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вячеслава Осиевского - Карим_Хайдаров.
08.09.2019 - 03:42: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
07.09.2019 - 07:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Декларация Академической Свободы - Карим_Хайдаров.
07.09.2019 - 03:18: ЭКОЛОГИЯ - Ecology -> Проблема ГМО - Карим_Хайдаров.
05.09.2019 - 13:33: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution