к оглавлению

Счетчики

Счетчиком называют устройство, сигналы на выходе которого отображают число импульсов, поступивших на счетный вход. Триггер на рис. 9.33 может служить примером простейшего счетчика. Такой счетчик считает до двух. Счетчик, образованный цепочкой из m триггеров, может подсчитать в двоичном коде 2m импульсов. Каждый из триггеров такой цепочки называют разрядом счетчика. Число m определяет количество разрядов двоичного числа, которое может быть записано в счетчик. Число Кcч=2m называют коэффициентом (модулем) счета.

Информация снимается с прямых и (или) инверсных выходов всех триггеров. В паузах между входными импульсами триггеры сохраняют свои состояния, т.е. счетчик запоминает число входных импульсов.

Нулевое состояние всех триггеров принимается за нулевое состояние счетчика в целом. Остальные состояния нумеруются по числу поступивших входных импульсов. Когда число входных импульсов Nвх>Kсч происходит переполнение, после чего счетчик возвращается в нулевое состояние и цикл повторяется. Коэффициент счета, таким образом, характеризует число входных импульсов, необходимое для выполнения одного цикла и возвращения в исходное состояние. Число входных импульсов и состояние счетчика взаимно определены только для первого цикла.

После завершения каждого цикла на выходах последнего триггера возникают перепады напряжения. Это определяет второе назначение счетчиков: деление числа входных импульсов. Если входные сигналы периодичны и следуют с частотой F,,, то частота выходных сигналов равна Fвых=Fвх/Kсч. В этом случае коэффициент счета называется коэффициентом деления и обозначается как Кдел.

У счетчика в режиме деления используется выходной сигнал только последнего триггера, промежуточные состояния остальных триггеров во внимание не принимаются. Всякий счетчик может быть использован как делитель частоты. Поэтому подобное устройство часто называют счетчиком-делителем. Такие делители имеют целочисленный коэффициент деления. Однако элементная база современной микроэлектроники позволяет создавать делители и с дробными коэффициентами деления [5, 8].

Символом счетчиков на схемах служат буквы СТ (от англ. counter — счетчик), после символа проставляют число, характеризующее модуль счета (например, 2 или 10 — СТ2, СТ10).

Основными эксплуатационными показателями счетчика являются емкость и быстродействие. Емкость счетчика, численно равная коэффициенту счета, равна числу импульсов за один цикл.

Быстродействие счетчика определяется двумя параметрами: разрешающей способностью Тр„.„ и временем установки кода счетчика Туст. Под разрешающей способностью подразумевают минимальное время между двумя входными сигналами, в течение которого не возникают сбои в работе. Обратная величина Fмакс=l/Tpаз,cч, называется максимальной частотой счета. Время установки кода Туст равно времени между моментом поступления входного сигнала и переходом счетчика в новое устойчивое состояние. Эти параметры зависят от быстродействия триггеров и способа их соединения между собой.

Счетчики различаются числом и типами триггеров, способами связей между ними, кодом, организацией счета и другими показателями. Цифровые счетчики классифицируются по следующим параметрам [7, 8]:

О коэффициент счета — двоичные (бинарные); двоично-десятичные (декадные) или с другим основанием счета; с произвольным постоянным и переменным (программируемым) коэффициентом счета;

О направление счета — суммирующие, вычитающие и реверсивные;

О способ организации внутренних связей — с последовательным, параллельным или с комбинированным переносом, кольцевые.

Классификационные признаки независимы и могут встречаться в разных сочетаниях: например, суммирующие счетчики бывают как с последовательным, так и с параллельным переносом, они могут иметь двоичный, десятичный и иной коэффициенты счета.

Введением дополнительных логических связей — обратных и прямых — двоичные счетчики преобразуются в недвоичные. Наибольшее распространение получили десятичные (декадные) счетчики, работающие с К„=10 в двоично-десятичном коде (двоичный — по коду счета, десятичный — по числу состояний).

Десятичные счетчики организуются из четырехразрядных двоичных счетчиков. Избыточные шесть состояний исключаются введением дополнительных связей. Возможны два варианта построения схем: счет циклически идет от 0000 до 1001 и исходным состоянием служит 0110B=6D; счет происходит до 1111B=15D (В, D — обозначения двоичного и десятичного чисел). Первый вариант на практике применяется чаще.

В суммирующем счетчике каждый входной импульс увеличивает на единицу число, записанное в счетчик, при этом перенос информации из одного разряда в другой, более старший, имеет место, когда происходит смена состояния 1 на 0.

Вычитающий счетчик действует обратным образом: двоичное число, хранящееся в счетчике, с каждым поступающим импульсом уменьшается на единицу. Переполнение вычитающего счетчика происходит после достижения им нулевого состояния. Перенос из младшего разряда в старший здесь имеет место при смене состояния младшего разряда с 0 на 1.

Реверсивный счетчик может работать в качестве суммирующего и вычитающего. Эти счетчики имеют дополнительные входы для задания направления счета. Режим работы определяется управляющими сигналами на этих входах. В программе EWB такие счетчики представлены ИМС 74163 и 74169 (К155ИЕ18, ИЕ17).

Счетчики с последовательным переносом представляют собой цепочку триггеров, в которой импульсы, подлежащие счету, поступают на вход первого триггера, а сигнал переноса передается последовательно от одного разряда к другому.

Главное достоинство счетчиков с последовательным переносом — простота схемы. Увеличение разрядности осуществляется подключением дополнительных триггеров к выходу последнего триггера. Основной недостаток счетчиков с последовательным переносом — сравнительно низкое быстродействие, поскольку триггеры срабатывают последовательно, один за другим. Счетчики этого класса в библиотеке EWB не представлены.

Максимальная частота счета определяется режимом работы. Если считывание состояния счетчика должно происходить после каждого входного импульса, как это имеет место, например, при счете до заданного числа, то максимальная частота равна Fmax=l/[(m-l)Tэдп+Tсp], где т — число разрядов; Тэдп — задержка переключения одного триггера; Тер — время срабатывания внешнего элемента или считывающей схемы.

Счетчики с параллельным переносом состоят из синхронных триггеров. Счетные импульсы подаются одновременно на все тактовые входы, а каждый из триггеров цепочки служит по отношению к последующим только источником информационных сигналов. Срабатывание триггеров параллельного счетчика происходит синхронно, и задержка переключения всего счетчика равна задержке одного триггера. В таких счетчиках используются JK- и D-триггеры. В схемном отношении они сложнее счетчиков с последовательным переносом. Число разрядов у этих счетчиков обычно невелико (4...6), поскольку с повышением числа разрядов число внутренних логических связей быстро растет.

Счетчики с параллельным переносом применяются в быстродействующих устройствах. Они обладают более высокой помехоустойчивостью, так как в паузах между импульсами триггеры счетчика блокированы. К их недостаткам следует отнести меньшую нагрузочную способность отдельных разрядов из-за дополнительной нагрузки внутренними связями. Каскад, предшествующий счетчику, должен иметь достаточную мощность, чтобы управлять входами нескольких триггеров.

Счетчики с параллельным переносом (их чаще называют синхронными) в библиотеке EWB представлены счетчиками 74160, 74162, 74163 и 74169 (аналоги — К155ИЕ9, ИЕН, ИЕ18, ИЕ17 соответственно).

В счетчике с параллельно-последовательным переносом триггеры объединены в группы так, что отдельные группы образуют счетчики с параллельным переносом, а группы соединяются последовательно. В роли групп могут быть и готовые счетчики. Счетчики этого типа, как правило, многоразрядные. Общий коэффициент счета равен произведению коэффициентов счета всех групп. По быстродействию они занимают промежуточное положение.

Счетчики-делители, оформленные как самостоятельные изделия, имеются в составе многих серий микросхем. Номенклатуру счетчиков отличает большое разнообразие. Многие из них обладают универсальными свойствами и позволяют управлять коэффициентом и направлением счета, вводить до начала цикла исходное число, прекращать счет по команде, наращивать число разрядов и т.п. С помощью готовых счетчиков можно решить большинство практических задач, возникающих перед разработчиком аппаратуры.

В ряде случаев может возникнуть потребность в счетчиках с нетиповыми характеристиками. Они создаются из отдельных триггеров и логических элементов.

Проектирование счетчика сводится к определению числа триггеров и организации связей между ними и логическими элементами, а также вычислению разрешающей способности счетчика (максимальной частоты счета).

На первом шаге проектирования заданный коэффициент счета (деления) преобразуется в двоичный код. Число разрядов двоичного числа показывает, сколько триггеров должен иметь счетчик, а число единиц определяет число входов логического элемента. Входы элемента подключаются к прямым выходам Q тех триггеров, которые соответствуют единицам двоичного числа. Следует только учитывать, что первый, входной триггер отображает младший разряд числа. Выход логического элемента соединяется со входами установки нуля (входы R) всех триггеров, от которых сделаны отводы, а также тех, которые непосредственно за ними следуют.

Результаты проектирования применимы к триггерам разных видов логики, однако реальные схемы при этом могут различаться в деталях. Поскольку принудительная установка в нуль по R-входу у некоторых типов триггеров осуществляется сигналами логического нуля (ТТЛ, ДТЛ), у других — сигналами логической единицы (КМОП), в первом случае должен быть применен логический элемент И-НЕ, во втором — И. Кроме того, в суммирующем счетчике опрокидывание каждого последующего триггера должно происходить тогда, когда сигнал на выходе предыдущего триггера изменяется от 1 к 0, поэтому важен порядок соединения триггеров между собой. Если в счетчике применяются триггеры с прямым управлением (по фронту 0—>1), их входы присоединяются к инверсным выходам предыдущих. В случае триггеров с инверсным управлением входы подключают к прямым выходам. Добавив к исходной схеме несколько дополнительных элементов, можно расширить ее возможности — сделать счетчик с самоостановом (одноразового действия) или обеспечить в режиме деления кратковременный импульс на выходе последнего триггера.

Порядок разработки устройств на базе счетчиков рассмотрим на примере цифровых часов, функциональная схема которых приведена на рис. 9.35. Часы содержат три пары индикаторов для отображения часов, минут, секунд и два одиночных индикатора-разделителя. Индикаторы управляются от подсхем cont24 и cont60 с питанием от источника +5V. В качестве задающего генератора используется функциональный генератор, режимы работы которого показаны на рис. 9.36.

Следует отметить, что представленная на рис. 9.35 схема обладает крайне низким быстродействием, поэтому реализовать режим секундомера путем повышения частоты задающего генератора не удалось. Блок cont60 представляет собой счетчик с коэффициентом счета Ксч=60, его функциональная схема показана на рис. 9.37. Блок содержит подсхему-счетчик cont6 (Kcч=6) и двоично-десятичный счетчик 74160 (К155ИЕ9). Микросхема К155ИЕ9 (74160) — декадный двоично-десятичный счетчик [7]. Он запускается положительным перепадом тактового импульса и имеет синхронную загрузку (предварительную установку каждого триггера по входам А, В, С, D). Несколько счетчиков ИЕ9 образуют синхронный многодекадный счетчик. Сброс всех триггеров — асинхронный по общему входу сброса R (CLR').

Electronics Workbench V 5.12

Рис. 9.35. Функциональная схема часов

Electronics Workbench V 5.12

Рис. 9.36. Панель функционального генератора в схеме часов

Electronics Workbench V 5.12

Рис. 9.37. Функциональная схема счетчика cont60

Счетчик содержит внутреннюю логику ускоренного переноса, и все триггеры получают перепад тактового импульса одновременно. Изменения выходных состояний триггеров совпадают по времени, поэтому в выходных импульсных последовательностях нет пиковых помех. Запускающий тактовый фронт импульса — положительный, причем для варианта этой микросхемы с переходами Шотки буферный элемент тактового входа имеет порог с гистерезисом 400 мВ, что уменьшает чувствительность к импульсным помехам, а также обеспечивает устойчивое переключение триггеров при медленно нарастающем перепаде тактового импульса.

Счетчик ИЕ9 — полностью программируемый, поскольку на каждом из его выходов можно установить требуемый логический уровень. Такая предварительная установка происходит синхронно с перепадом тактового импульса и не зависит от того, какой уровень присутствует на входах разрешения счета СЕР (ENP) и СЕТ (ENT). Напряжение низкого уровня, поступившее на вход параллельной загрузки РЕ (LOAD'), останавливает счет и разрешает подготовленным на входах DO...D3 (А, В, С, D) данным загрузиться в счетчик в момент прихода следующего положительного перепада тактового импульса (от низкого к высокому уровню или при переходе от 0 к 1).

Сброс счетчика ИЕ9 — асинхронный. Если на общий вход сброса R поступило напряжение низкого уровня, на выходах всех четырех триггеров устанавливаются низкие уровни независимо от сигналов на входах С (CLK), РЕ, СЕТ и СЕР. Внутренняя схема ускоренного переноса необходима для синхронизации многодекадной цепи счетчиков ИЕ9. Специально для синхронного каскадирования микросхема имеет два входа разрешения: СЕР (параллельный) и СЕТ (вспомогательный, с условным названием "трюковый"), а также выход ТС (RCD — окончание счета).

Счетчик считает тактовые импульсы, если на обоих его входах СЕР и СЕТ напряжение высокого уровня. Вход СЕТ последующего счетчика получает разрешение счета в виде напряжения высокого уровня от выхода ТС предыдущего счетчика. Длительность высоких уровней (сигнала логической 1) на выходе ТС примерно соответствует длительности высокого уровня на выходе QO предыдущего счетчика.

Для счетчиков ИЕ9 не допускаются перепады от высокого уровня к низкому на входах СЕР и СЕТ, если на тактовом входе присутствует напряжение низкого уровня. Нельзя подавать положительный перепад на вход РЕ, если на тактовом входе присутствует напряжение низкого уровня, а на входах СЕР и СЕТ — высокого (во время перепада или перед ним). Сигналы на входах СЕР и СЕТ можно изменять, если на тактовом входе С присутствует напряжение низкого уровня. Когда на входе РЕ появляется высокий уровень, а входы СЕ неактивны (т.е. на СЕР и СЕТ — низкий уровень), то вместе с последующим положительным перепадом тактового импульса на выходах QO...Q3 (QA, QB, QC, QD) появится код от входов DO...D3.

Подавая сигналы высокого уровня на входы СЕТ и СЕР при низком уровне сигнала на тактовом входе, получим на выходах наложение кодов загрузки и внутреннего счета. Если при низком уровне тактового сигнала на входы СЕТ, СЕР и РЕ поданы положительные перепады, нарастающие от низкого уровня к высокому, тактовый перепад изменит код на выходах QO...Q3 на последующий.

При входных сигналах высокого уровня счетчик К155ИЕ9 (74160) потребляет ток питания 94 мА, К555ИЕ9 (74 LS160A) — 32 мА; если все выходные сигналы имеют низкий уровень, то 101 и 32 мА соответственно. Максимальная частота счета 25 МГц. Время распространения сигнала от входа С до выхода ТС ("Счет закончен") составляет 35 и 27 нс, а время сброса (от входа R до выходов Q) 38 и 28 нс для обычного исполнения и варианта Шотки.

Схема счетчика cont6 показана на рис. 9.38. Счетчик выполнен на трех JK-триггерах в счетном режиме (на J- и К-входы поданы сигналы 1). Для обеспечения коэффициента счета Kсч=6 использована обратная связь на элементе И U2, который срабатывает при коде 110B=6D, при этом сигнал 1 с его выхода через элемент ИЛИ U1 поступает на R-входы триггеров, переводя их в нулевое состояние. Ко второму входу элемента U1 подключен вход R для подачи внешнего сигнала сброса. Поскольку для рассматриваемого счетчика и счетчика 74160 эти сигналы различны (для первого это 1, а для второго — 0), на входе R счетчика cont6 (рис. 9,37) включен инвертор. Схема счетчика часовых интервалов cont24 показана на рис. 9.39. Счетчик выполнен на двух ИМС 74160 и обеспечивает коэффициент Ксч=24.

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Контрольные вопросы и задания

1. Что такое счетчик, какого типа они бывают?

2. Каким образом создаются счетчики с коэффициентом счета, не кратным 2?

3. Что такое программируемый счетчик?

4. Разработайте схему счетчика с коэффициентом счета 3 на JK- и D-триггерах (см. схему на рис. 9.38).

5. Проведите моделирование всех функциональных узлов часов на рис. 9.35, выявите недостатки и устраните их.

6. Проведите моделирование и опишите порядок работы счетчика на рис. 9.39.

к оглавлению


Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution