к оглавлению

Генератор с кварцевым резонатором

Генераторы с кварцевым резонатором используются в разнообразных устройствах, начиная от радиопередатчиков (одно из самых первых применений) и кончая наручными часами. Для изготовления кварцевых резонаторов используется кварц — минерал естественного происхождения. Химически это двуокись кремния, а по структуре — кристалл. В природе кварц очень распространен, но полноценные кристаллы, пригодные для применения в качестве резонаторов, встречаются сравнительно редко.

Для изготовления резонатора из кварцевого кристалла вырезается пластина. Простейший способ ее вырезания — так называемый срез Кюри, при котором большие стороны пластины параллельны оси симметрии кристалла и перпендикулярны двум его граням. Исследования показали, что температурная стабильность кварца получается более высокой при косых срезах — например, под углами 35 или 49° к оси симметрии кристалла (срезы AT и ВТ).

Если пластину кварца положить между двумя металлическими обкладками и сжать, то на обкладках появятся электрические заряды противоположных знаков. Это явление, называемое прямым пьезоэлектрическим эффектом, присуще также турмалину, сегнетовой соли, некоторым видам синтетических кристаллов и керамики. При переходе от сжатия пластины к ее растяжению электрические заряды обкладок изменяют знаки. Пьезоэлектрический эффект обратим: если пластину кварца поместить в электрическое поле, то в кварце возникнет упругая деформация — сжатие или расширение в соответствии с направлением электрического поля. Это явление названо обратным пьезоэлекрическим эффектом.

Пластина кварца способна к собственным механическим колебаниям, при которых как по толщине, так и по длине распространяются упругие возмущения. Частота упругих колебаний зависит от размеров пластины. Так, поперечные колебания при толщине пластины b (в мм) при срезе Кюри имеют собственную частоту примерно 2,84/Ь (в МГц), а продольные колебания при длине пластины L (в мм) — 2,7/L МГц.

Чтобы поддерживать собственные колебания пластины незатухающими, ее включают в схему автогенератора с помощью металлических обкладок и кварцедер-жателя. Наиболее распространенный способ наложения обкладок — нанесение слоев серебра на поверхность кварца. Кварцедержатель служит для контакта внешних проводов с обкладками. Конструкцию из кварцевой пластины и кварцедержателя называют кварцевым резонатором.

Если на пластину действует переменное напряжение, то она испытывает механические колебания. Следовательно, в цепи, содержащей кварц, протекает переменный ток, который состоит из двух слагаемых: тока емкостного характера, определяемого емкостью между обкладками, и тока зарядов, создаваемых пьезо-эффектом. Эта последняя слагаемая имеет по отношению к напряжению фазовый сдвиг, отличный от 90°, и ее вектор может либо опережать вектор напряжения, либо отставать от него. Когда частота внешнего напряжения близка к частоте собственных механических колебаний кварца, то наблюдается электромеханический резонанс; амплитуда тока и амплитуда собственных механических колебаний при этом становятся максимальными. Если при данном напряжении измерять ток в цепи вблизи резонансной частоты и определять фазовый сдвиг тока по отношению к напряжению, то можно подобрать электрическую схему, эквивалентную кварцевому резонатору и представленную на рис. 8.35, а. (обозначения на рис. 8.35, а соответствуют обозначениям, принятым в EWB 5.0). В этой схеме конденсатор СО отображает емкость между обкладками кварца. Вторая ветвь, состоящая из индуктивности LS, емкости CS и активного сопротивления RS, представляет собой последовательный колебательный контур, собственная частота которого определяется формулой:

Electronics Workbench V 5.12 (8.21)

где C=(CS-CO)/(CS+CO) — эквивалентная емкость контура с учетом емкости кварце-держателя.

Electronics Workbench V 5.12

Electronics Workbench V 5.12

Параметры кварца существенно отличаются от параметров обычных контуров. Так, для кварцевого резонатора на 3 МГц емкость CS исчисляется десятыми и сотыми долями пикофарады, индуктивность LS — тысячами и десятками тысяч микрогенри (может быть и генри), сопротивление RS — единицами, десятками или, при неудачной конструкции, сотнями ом. Емкость СО между обкладками составляет еди ницы или десятки пикофарад. Добротность кварцевого резонатора достигает десятков тысяч, а в резонаторах сверхвысокой добротности — несколько миллионов.

Схема для испытания кварцевого резонатора из программы EWB 5.0 показана на рис. 8.35, б. Она содержит резонатор Q, резистор R сопротивлением 0,01 Ом, функциональный генератор и измеритель АЧХ и ФЧХ. Значения параметров исследуемого резонатора показаны в диалоговом окне на рис. 8.36.

Результаты испытания резонатора показаны на рис. 8.37. Из АЧХ на рис. 8.37, а видно, что, кроме резонанса токов (частота Fo), в кварцевом резонаторе имеет место также и резонанс напряжения (частота Fv). Частота резонанса по напряжению определяется цепочкой LS-RS-CS и равна

Electronics Workbench V 5.12 (8.22)

Electronics Workbench V 5.12

Частота Fv очень близка к частоте параллельного резонанса Fo, так как CS>CO. Как видно из ФЧХ на рис. 8.37, б, в промежутке между этими частотами реактивное сопротивление кварца имеет индуктивный характер (ток через резистор R, с которого снимается выходной сигнал напряжения на измеритель АЧХ-ФЧХ, запаздывает почти на 90°). Расчетные значения Fo и Fv, полученные по формулам (8.21), (8.22), практически совпадают с результатами моделирования. Из рис. 8.37, а добротность определить по АЧХ достаточно сложно. Мы использовали следующую (очень приближенную) методику: суммировались значения коэффициентов передачи на частотах Fo (-102 дБ) и Fv (-198 дБ), из этой суммы вычиталось значение коэффициента передачи на частоте 990 кГц (-145 дБ, начало АЧХ), в результате чего получалась "высота" двух резонансных пиков в "чистом виде" (без пьедестала, равного коэффициенту передачи на частоте 990 кГц). Затем полученный остаток (155 дБ), равный сумме двух резонансных пиков, делился на два, в результате чего получаем приближенное эквивалентное значение добротности Qе=77,5 дБ=7500. Расчетное значение добротности можно получить по формуле, отличающейся от формулы для обычного колебательного контура наличием множителя, который называется коэффициентом включения и для схемы на рис. 8.37, а определяется выражением: p=CS/CO=0,096. В таком случае расчетное значение добротности

Electronics Workbench V 5.12

, что несколько превышает полученное по АЧХ значение, что объясняется неточностью изложенной выще методики.

Electronics Workbench V 5.12

Схема автогенератора с кварцевым резонатором на двухкаскадном усилителе показана на рис. 8.38, а. Первый каскад выполнен на транзисторе VT1, включенном по схеме с ОБ. Режим по постоянному току задается делителем на резисторах Rl, R2 и сопротивлением R4 в цепи эмиттера, конденсатор Cb — блокировочный. На выходе первого каскада включен эмиттерный повторитель на транзисторе VT2. Кварцевый резонатор Q включен в цепь положительной обратной связи, значения его параметров показаны в диалоговом окне на рис. 8.36.

Из осциллограммы выходного сигнала генератора (рис. 8.58, б) видно, что частота колебаний Fo=l/(T2-Tl)=951 кГц почти на 5% меньше резонансной частоты кварца, что объясняется влиянием емкостей база-эмиттер и база-коллектор транзисторов.

Контрольные вопросы и задания

1. Назовите области применения генераторов с кварцевыми резонаторами.

2. Как устроен кварцевый резонатор?

3. Используя схему на рис. 8.35, б, проведите испытания кварцевого резонатора при сопротивлении резистора R=0,005 Ом. Сравните полученные результаты с расчетными.

4. Проведите испытания резонатора с параметрами, указанными на рис. 8.36 при RS=100 Ом.

5. Исследуйте возможность использования схемы на рис. 8.38, а в диапазоне частот до 10 МГц, изменяя соответствующим образом параметры кварца.

6. Исследуйте зависимость частоты генератора на рис. 8.38, а от параметров СЕ и СС транзистора, а также от температуры в диапазоне от 27 до 100°С, использовав команду Temperature Sweep из меню Analysis.

к оглавлению


Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 26.09.2020 - 13:50: СОВЕСТЬ - Conscience -> РУССКИЙ МИР - Карим_Хайдаров.
26.09.2020 - 13:49: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
26.09.2020 - 13:46: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
26.09.2020 - 11:17: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
26.09.2020 - 08:15: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
25.09.2020 - 21:26: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Николаевича Боглаева - Карим_Хайдаров.
25.09.2020 - 17:15: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
25.09.2020 - 17:00: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Проблема народного образования - Карим_Хайдаров.
25.09.2020 - 16:59: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от О.Н. Четвериковой - Карим_Хайдаров.
25.09.2020 - 10:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Ю.Ю. Болдырева - Карим_Хайдаров.
24.09.2020 - 20:03: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> КОМПЬЮТЕРНО-СЕТЕВАЯ БЕЗОПАСНОСТЬ ДЛЯ ВСЕХ - Карим_Хайдаров.
24.09.2020 - 20:00: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> ПРОБЛЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА - Карим_Хайдаров.
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution