к оглавлению   ТОЭЭЭ   ТЭЦ  

Многокаскадные усилители

  1. Классификация, основные параметры и характеристики усилителей
  2. Основные характеристики многокаскадных усилителей
  3. Основные параметры многокаскадных усилителей
  4. Две схемы многокаскадных усилителей
  5. Анализ частотной характеристики усилительного каскада

Классификация, основные параметры и характеристики усилителей

На практике в устройствах промышленной электроники в большинстве случаев для получения необходимой полезной выходной мощности в нагрузке одного каскада недостаточно. Поэтому применяют многокаскадные усилители, собираемые из нескольких последовательно соединенных одиночных усилительных каскадов. В блок-схеме (рис. 1) в качестве датчиков, преобразующих почти любой неэлектрический сигнал во входной электрический сигнал могут использоваться различные источники ЭДС, например микрофон, антенна, фотоэлемент, фотодиод, фоторезистор, фотоэлектронный умножитель, терморезистор, тензорезистор, тахогенератор, пьезоэлектрический преобразователь, считывающая головка с магнитофонной, перфорированной или фотографической ленты, биотоки, индуктивные или емкостные датчики давления, перемещения, плотности уровня и т. д.

В качестве нагрузки можно подключать в выходную цепь каскада УМ комплексные активно-реактивные нагрузки (R, RL, RС, РСL), например обмотку громкоговорителя, фидерную или абонентскую сеть, самописец, обмотку электромагнитного реле, или шагового (искателя) двигателя, или электроконтактора, обмотку возбуждения электродвигателя, различные контрольно-измерительные приборы, блоки развертки луча осциллографа или телевизора, световые индикаторы и т. д.

В блок-схеме многокаскадного усилителя первый входной каскад t предназначен для согласования сопротивления датчика входного сигнала со входным сопротивлением усилителя при одновременном усилении входного сигнала по току или напряжению. 

Рис. 1. Блок-схема многокаскадного усилителя

 

Последний - оконечный, или выходной, каскад является каскадом усиления мощности, передаваемой в полезную нагрузку.

Все остальные промежуточные каскады, включая предоконечный каскад, обеспечивают усиление полезного сигнала по напряжению или току до величины, необходимой для оптимальной работы выходного каскада, при которой отбирается в нагрузку максимально возможная полезная мощность каскада при допустимой величине  нелинейных искажений.

На блок-схеме пунктиром показаны цепи отрицательной обратной связи b1 и b2, которые, уменьшая коэффициент усиления, улучшают другие более важные качественные показатели усилительного устройства.

Многокаскадные усилители характеризуются следующими признаками, параметрами и характеристиками. По разным признакам различают:

1) усилители на электронных усилительных лампах, на транзисторах, на тиристорах, на туннельных диодах, на микросхемах и т. п.;

2) по количеству усилительных каскадов - двух-, трех- и более каскадные усилители;

3) по частотным свойствам - усилители напряжения или тока низкой частоты (НЧ), высокой частоты (ВЧ), промежуточной частоты (ПЧ), ультразвуковой частоты (УЗКЧ), узкополосные и широкополосные усилители, усилители постоянного тока (УПТ);

4) по виду межкаскадной связи - усилители с RС-связью, в которых применяются разделительные конденсаторы между каскадами; усилители с трансформаторной связью между каскадами; усилители с полосовым колебательным контуром связи между каскадами; усилители с непосредственной гальванической связью между каскадами;

5) по виду используемой последовательной или параллельной отрицательной обратной связи по напряжению или току;

6) по режимам работы в классах А, В, АВ, С, Д;

7) по соотношению величины входного сопротивления первого каскада Rвх к-да, сравнительно с величиной сопротивления датчика Rг входного сигнала различают: а) режим холостого хода (хх), когда Rвх к-да >> Rг; б) режим короткого замыкания (кз), когда Rвх к-да << Rг; в) режим согласования, когда Rвх к-да » Rг, при котором от датчика входного сигнала передается на вход усилителя наибольшая входная мощность сигнала;

8) по соотношению величины выходного сопротивления со стороны выходных клемм усилителя сравнительно с величиной сопротивления нагрузки Rн различают следующие режимы работы:

а) режим хх, когда Rвых << Rн;

б) режим кз, когда Rвых >> Rн;

в) режим согласования, когда Rвых » Rн.

Основные характеристики многокаскадных усилителей

Приведем основные характеристики многокаскадных усилителей.

1. Амплитудная характеристика, показывающая зависимость величины выходного напряжения усилителя от величины входного напряжения при постоянной частоте усиливаемого сигнала, то есть Uвых = f(Uвх) при f = = соnst » 400 или 1000 Гц (рис. 2, а). Чтобы нелинейные  искажения не превышали допустимой величины, используется только линейный участок амплитудной характеристики.

Наличие внутренних шумовых помех приводит к тому, что при отсутствии входного сигнала (Uвх = 0) на выходе усилителя имеется выходное напряжение Uвых = Uшума.

2. Частотная (или амплитудно-частотная) характеристика, показывающая зависимость величины коэффициента усиления усилителя от частоты входного сигнала при неизменной величине входного напряжения, то есть К = Uвых / Uвх = j(f) при Uвх = соnst.

На частотной характеристике, показанной на рис. 2, б, различают три области: а) область низкой частоты; б) область средней частоты; в) область верхней частоты.

Рис. 2. Характеристики усилителей:
а - амплитудная; б - частотная
(или амплитудно-частотная); в - фазовая

 

Эта характеристика показывает, что наибольшее усиление полезного сигнала происходит в области средних частот, а в областях низкой и верхней частот происходит завал характеристики, обусловленный реактивными (емкостными) элементами в схеме усилителя.

На этом графике показана рабочая полоса частот в пределах от верхней граничной частоты до нижней граничной частоты, то есть Df = fв гран - fн гран, где завал частотной характеристики не превышает допустимую величину более чем на 30% от коэффициента максимального усиления. Обычно ось абсцисс частотной характеристики строят в логарифмическом масштабе, чтобы очень сильно не растягивать график.

3. Фазовая характеристика, показывающая величину угла сдвига фазы j между фазой выходного сигнала и фазой входного сигнала в зависимости от частоты сигнала, то есть j = y(f).

На графике (рис. 2, в) видно, что фазовый угол сдвига j между выходным и входным напряжениями в области средних частот примерно равен нулю, а в областях нижней и верхней частот допустимая величина этого угла примерно равна j » p/4 = 45°.

Нужно иметь в виду, что фазовые искажения связаны с наличием реактивных элементов (емкостей и индуктивностей) в схемах усилительных устройств. Фазовые искажения существенное значение имеют в осциллографической, телевизионной, радиолокационной, импульсной и т. п. технике. В усилителях звуковой частоты они не оказывают заметного влияния на восприятие звукового сигнала человеком.

Основные параметры многокаскадных усилителей

Основными параметрами многокаскадных усилителей являются:

1. Общий коэффициент усиления по напряжению

Кu = Uвых / Uвх = Um вых / Um вх ,

где Uвх и Umвх обозначают соответственно действующие и амплитудные значения выходных и входных напряжений усиливаемого сигнала.

В ламповых схемах усилителей, а также в усилителях на полевых униполярных транзисторах, у которых входное сопротивление каскада значительно больше внутреннего сопротивления датчика входного сигнала, то есть Rвх к-да >> Rг, то можно принять Uвх » Ег, где Ег - ЭДС датчика сигнала.

Однако в транзисторных усилителях, у которых Rвх к-да < Rг, при необходимости определяют коэффициент усиления усилителя по напряжению относительно величины ЭДС Ег датчика как генератора входного сигнала. При этом Кu = Uвых / Ег. Если усилитель содержит несколько последовательно включенных каскадов, то общий коэффициент усиления будет равен произведению коэффициентов усиления всех каскадов, то есть

Кu = Uвых / Uвх = Кu1 * Кu2 ... Кun.

2. Коэффициент усиления по току

Кi = Im вых / Im вх = Iвых / Iвх ,

где Iвых - ток в нагрузке, Iвх - ток во входной цепи усилителя.

3. Коэффициент усиления по мощности

Кp = Кi * Кu = Рвых / Рвх,

где Рвых - полезная мощность, выделяемая в нагрузке; Рвх полезная мощность, расходуемая во входной цепи усилителя.

4. Если коэффициенты усиления усилителя выражены в децибелах, то расчетные формулы имеют следующий вид:

Кu(дб) = 20lgКu; Кi(дБ) = 20lgКi; Кр(дБ) = 10lgКр.

Некоторые соотношения для перевода безразмерных Кu в коэффициенты усиления, выраженные в децибелах Кu(дБ), приведены в табл. 1.

       Таблица 1

Кu

Кu (дБ)

1.12

1

1.41

3

2

6

3.16

10

5.62

15

10.0

20

17.8

25

31.6

30

56.2

35

70.8

37

100

40

Кu

Кu (дБ)

178

45

200

46

251
48

316

50

562

55

1000

60

1780

65

2000

66

3160

70

3980

72

5620

75

Кu

Кu (дБ)

6310

76

7940

78

8910

79

10000

80

100000

100

1000000

120

10000000

140

 

 

Примечания. 1. Если нужно перевести безразмерные Кр в коэффициенты усиления мощности, выраженные в децибелах Кр (дБ), то указанные в таблице числа в децибелах Кu(дБ) следует разделить на два. 2. Если необходимо выразить не усиление, а ослабление сигнала, когда Uвых < Uвх в указанное в таблице число раз, то перед найденным числом децибел нужно обязательно поставить знак минус ( - ), который означает, на сколько децибел ослаблен сигнал.

Если коэффициент усиления каждого каскада выражен в децибелах, то общий коэффициент усиления усилителя будет равен сумме коэффициентов усиления всех каскадов:

К (дБ) = К1 (дБ) + К2 (дБ) + . . . + Кn (дБ) .

Человеческий слуховой анализатор может различать изменение уровня звукового сигнала около 1 дБ. Болевое ощущение вызывает верхний уровень звука, соответствующий 140 дБ.

5. Коэффициент полезного действия, характеризующий экономичность усилителя:

а) электрический КПД

hэ = Рвых / Ро × 100% ;

б) промышленный КПД с учетом всех потерь в цепях усилителя

hп = Рвых / ( Ро + Рпотерь ) × 100%,

где    Rвых = 0,5 * I2m вых  * Rн - полезная мощность, выделяемая в нагрузке;

      Ро - мощность, потребляемая в выходной цепи усилителя;

       Рпотерь - мощность, расходуемая на накал ламп и во вспомогательных цепях усилителя.

6. Допустимый коэффициент частотных искажений для каждого каскада в области нижних Мн и верхних Мв частот, равный отношению коэффициента усиления в области средних частот Кср к коэффициенту усиления каскада в области нижних и верхних частот (Кн и Кв), принимают равным

Мн = Мв = Кср / Кн = Кср / Кв =, что соответствует 3 дБ.

В многокаскадных усилителях общий коэффициент частотных искажений как в области нижних, так и в области верхних частот равен Мус =   = М1 * М2 ... Мn, где n - число каскадов. В усилителях с реостатно-емкостной связью коэффициенты частотных искажений можно определить как для нижней граничной частоты, так и для верхней граничной частоты:

 

Мв = Кср / Кв = ... ламповый вариант;

Мв = Кср / Кв = ... транзисторный вариант.

Если принять допустимый коэффициент частотных искажений в пределах 1,05 ... 1,41, то соответствующие граничные частоты будут находиться в пределах

fн гр =

fв гр =

 

где для лампового усилителя tн = Сразд * Rс;

tв = Свх Rэкв; Rэкв = Rа || Ri || Rc;

аналогично, с учетом особенностей транзисторных схем, можно для них определить постоянные времени в области нижних и верхних граничных частот.

7. Коэффициент нелинейных искажений оценивается величиной

Нелинейные искажения характеризуют степень искажения формы усиленного выходного напряжения (или тока) по сравнению с формой входного сигнала. Появление нелинейных искажений полезного сигнала объясняется нелинейностью вольт-амперных характеристик усилительных ламп или транзисторов при работе с большой амплитудой усиливаемого сигнала. Это явление наглядно показано на амплитудной характеристике, выражающей линейную зависимость выходного напряжения при малых амплитудах входного сигнала и нарушение линейности с увеличением амплитуды входного усиливаемого сигнала. Это явление приводит к появлению в выходном сигнале высших гармоник, которых не было во входном сигнале.

В усилителях звуковой частоты (от 20 Гц до 16 кГц) нелинейные искажения проявляются в появлении хрипов и нечеткого, неразборчивого звуковоспроизведения. Допустимый коэффициент нелинейных искажений в таких усилителях не более 4-х % , а в усилителях телефонной связи не более 15-ти %.

8. Общий угол сдвига фаз между выходным и входным напряжениями многокаскадного усилителя как в области нижних, так и в области верхних частот равен j = j1 + j2 + ... + jn.

9. Коэффициент шума и внешних помех усилителя, связанный с внутренними флуктуационными процессами движения носителей зарядов в активных и пассивных элементах, входящих в электрические цепи усилителей, а также вследствие пульсаций питающего напряжения и наводки электромагнитных полей от внешних источников. Наибольшее влияние оказывают шумы и помехи, возникающие в первом каскаде усилителя, так как они усиливаются далее всеми последующими каскадами усилителя.

Наличие шумовых и внешних помех видно на амплитудной характеристике, которая начинается выше нулевого значения при отсутствии входного сигнала, то есть Uвых > 0 при Uвх = 0.

Наличие внутренних шумовых помех определяет пороговую чувствительность усилительного устройства, соответствующую минимальному напряжению входного сигнала, при котором выходное напряжение полезного сигнала равно выходному напряжению усилителя, возникающему от внутренних шумов.

Две схемы многокаскадных усилителей

В качестве примера на рис. 3 приведены две принципиальные электрические схемы многокаскадных усилителей: на биполярных транзисторах (а) и на полевых транзисторах (в).

В этих схемах усилителей в качестве первого входного каскада включен эмиттерный (катодный, истоковый) повторитель, который обеспечивает согласование высокоомного датчика сигнала со входным сопротивлением усилителя. Такой каскад, не усиливая входной сигнал по напряжению, усиливает его по току и мощности.

Все остальные каскады собираются по схеме с общим эмиттером (общим катодом, общим истоком), давая усиление и по току и по напряжению (транзисторный вариант), и в основном по напряжению (ламповый вариант).

Последний двухтактный каскад УМ (транзисторный вариант) и однотактный каскад УМ на лучевом тетроде (и полевом транзисторе) обеспечивают усиление сигнала по мощности, отдаваемой в нагрузку. 

 

 

Рис. 3. Две схемы многокаскадных усилителей;

 а - на биполярных транзисторах;

 в- на полевых транзисторах с и-каналом

 

В этих схемах между первым и вторым, между вторым и третьим каскадами применена резистивно-емкостная связь, в которую по переменной составляющей усиливаемого сигнала входят элементы, указанные далее в эквивалентной схеме (рис. 4).

Между третьим и четвертым - выходным - каскадами применена трансформаторная связь при помощи переходного трансформатора ТР1, которая обеспечивает повышение КПД каскада предварительного усиления, устраняет гальваническую связь между этими каскадами по постоянному току и напряжению, согласует величину выходного тока (транзисторный вариант) или напряжения (ламповый вариант) предоконечного каскада с необходимой величиной входного тока или входного напряжения выходного - оконечного - каскада.

При этом коэффициент трансформации ТР1 берется небольшой величины, около 2 ... 3.

Следует иметь в виду, что трансформаторная межкаскадная связь может давать резкий подъем частотной характеристики в области резонансной частоты трансформатора при соответствующей величине индуктивности и распределенной межвитковой емкости его обмоток.

Чтобы использовать это явление для компенсации завала частотной характеристики в области нижних или верхних частот, необходимо подбирать переходной трансформатор с резонансной частотой, соответствующей этим частотам. 

Рис. 4. Эквивалентная схема второго каскада а - транзисторного усилителя;

б -лампового усилителя

 

В выходную цепь оконечного каскада УМ (двухтактного - на биполярных транзисторах и однотактного на мощном лучевом тетроде) при помощи выходного трансформатора ТР2 включена нагрузка Rн (или Zн).

Во всех схемах выходной трансформатор согласует величину сопротивления нагрузки Rн с выходным сопротивлением каскада, исходя из ранее указанного соотношения n2*Rн = Rэкв откуда

Все предварительные каскады и однотактный каскад УМ работают в режиме класса А, а двухтактный каскад УМ на транзисторах может работать в классе А или с более высоким КПД в классе АВ1.

Если исключить из схемы двухтактного каскада УМ резисторы R5 , R6, то этот каскад будет работать в режиме класса В без начального смещения рабочей точки.

Для анализа частотной характеристики каждого каскада изображается его эквивалентная схема, то есть схема замещения каскада по переменным составляющим усиливаемого напряжения или тока.

При этом замещении источник питания Ек (или Еа - ламповый вариант) считается закороченным по переменным составляющим коллекторного (или анодного) тока, а транзистор замещается эквивалентным генератором тока iг = - bIвх и внутренним сопротивлением его Rг = Rвх транз или генератором напряжения (ламповый вариант) с ЭДС ег = - bUвх и внутренним его сопротивлением Rг = Ri, равным внутреннему сопротивлению усилительной лампы.

Пользуясь таким законом эквивалентного генератора, на рис. 4, а приведена эквивалентная схема второго каскада транзисторного усилителя (рис. 3, а) как эквивалентного генератора тока, а на рис. 4, б приведена полная эквивалентная схема второго каскада из лампового усилителя(рис. 3, б), где лампа представлена как генератор напряжения. Используя схему замещения лампового каскада и его типовую частотную характеристику, показанную на рис. 5, в качестве примера приведем анализ такой частотной характеристики.

Рис. 5. Амплитудно-частотная характеристика усилительного каскада

Анализ частотной характеристики усилительного каскада

Снижение коэффициента усиления в области нижних частот (fн гр) происходит в основном вследствие потерь выходного напряжения на разделительном конденсаторе Срз в цепи межкаскадной связи, который имеет емкостное сопротивление Хс = 1 / (wн Ср з)  значительной величины в области нижних частот и малой величины в области средних и верхних частот, на которых влияние его и не учитывается.

Снижение коэффициента усиления в области верхних частот (fв гр) вызывается тем, что резистор Rс3 шунтируется сравнительно небольшим емкостным сопротивлением входной паразитной емкости каскада

ХСвх з = 1 / (wн Свх з) ,

что снижает входное эквивалентное сопротивление каскада, уменьшая снимаемое с него напряжение, подаваемое на вход следующего каскада и соответственно уменьшая коэффициент усиления. Одновременно влияние этой емкости в области нижних и средних частот незначительно, поэтому в этих случаях в расчет не принимается.

Учитывая эти соображения, на рис. 6 приведены три эквивалентные схемы усилительного каскада, которые помогают составить расчетные формулы его коэффициентов усиления в области средних, нижних и верхних частот.

Во-первых, в области средних частот (рис. 6, а), где пренебрегают влиянием емкостных сопротивлений, получается максимальный коэффициент усиления. Из эквивалентной схемы следует, что

, где                 

, 

отсюда получим         

 

Рис. 6. Эквивалентные схемы лампового каскада в области:

 а - средних частот; б - низких частот; в - верхних частот

 

Во-вторых, в области нижних частот (рис. 6, б), где из полной эквивалентной схемы исключена входная паразитная емкость Cвх3,

или

где wн = 2pf н гр

постоянная времени в области

f н...tн = С р3 ×Rс3 =

f н = от до

В-третьих, в области верхних частот, где не учитывается влияние разделительного конденсатора Ср, (рис. 6, в), коэффициент усиления каскада будет определяться по формуле

где wв = 2pf в гр

f в гр¸;   tв =;

Свх 3 = С монт + С ак2 + С ск2 + С ас3(1 + К3)

Таким образом, определив Кср, Кн, Кв, Df = fв гр — fн гр, можно построить частотную характеристику каскада К = j(f) при Uвх = соnst.

Следует иметь в виду, что анализ частотной характеристики резистивно-емкостного каскада на транзисторе осуществляется по аналогичным формулам, но с учетом некоторых особенностей, присущих параметрам транзисторных каскадов, например зависимости коэффициента усиления по току от частоты.

к оглавлению   ТОЭЭЭ   ТЭЦ  


Знаете ли Вы, в чем фокус эксперимента Майкельсона?

Эксперимент А. Майкельсона, Майкельсона - Морли - действительно является цирковым фокусом, загипнотизировавшим физиков на 120 лет.

Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
- Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.

В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.

Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 23.11.2020 - 09:52: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
23.11.2020 - 09:51: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
23.11.2020 - 09:51: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
22.11.2020 - 18:34: ТЕОРЕТИЗИРОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - Theorizing and Mathematical Design -> ФУТУРОЛОГИЯ - прогнозы на будущее - Карим_Хайдаров.
22.11.2020 - 18:33: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Владимира Николаевича Боглаева - Карим_Хайдаров.
22.11.2020 - 17:42: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Пламена Паскова - Карим_Хайдаров.
22.11.2020 - 17:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Александра Флоридского - Карим_Хайдаров.
22.11.2020 - 16:31: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
21.11.2020 - 23:42: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> КОЛЛАПС МИРОВОЙ ФИНАНСОВОЙ СИСТЕМЫ - Карим_Хайдаров.
21.11.2020 - 21:05: ЭКОНОМИКА И ФИНАНСЫ - Economy and Finances -> ПРОБЛЕМА КРИМИНАЛИЗАЦИИ ЭКОНОМИКИ - Карим_Хайдаров.
21.11.2020 - 21:04: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от проф. В.Ю. Катасонова - Карим_Хайдаров.
21.11.2020 - 18:49: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.

Bourabai Research - Технологии XXI века Bourabai Research Institution