к оглавлению

АНАЛИТИЧЕСКИЕ СИГНАЛЫ

Нуль и единица - от Бога, все остальное - дело рук человеческих.

Леопольд Кронекер. Немецкий математик, XIX в.

Содержание: 10.1. Понятие аналитического сигнала. Комплексное представление вещественных сигналов. Аналитический сигнал. Спектральная плотность аналитического сигнала. 10.2. Примеры применения аналитических сигналов. Огибающая и мгновенная фаза сигналов. Мгновенная частота. Огибающие модулированных сигналов. Анализ каузальных систем. Литература.

Введение

Аналитический сигнал – это один из способов комплексного представления сигнала, который применяется при анализе сигналов и систем их обработки. Он позволяет ввести в анализ понятия огибающей и мгновенной частоты сигнала.

10.1. Понятие аналитического сигнала [1,25].

Комплексное представление вещественных сигналов. При математическом анализе очень часто вместо вещественных сигналов с целью упрощения математического аппарата преобразований данных удобно использовать эквивалентное комплексное представление сигналов. Так, например, в теории электрических цепей вещественная запись синусоидального напряжения

u(t) = Uo cos (wot+j)

заменяется комплексной формой записи:

, , при этом .

В общем случае, произвольный динамический сигнал s(t), заданный на определенном участке временной оси (как конечном, так и бесконечном) имеет комплексную двустороннюю спектральную плотность S(w). При раздельном обратном преобразовании Фурье реальной и мнимой части спектра S(w) сигнал s(t) разделяется на четную и нечетную составляющие, которые являются двусторонними относительно t = 0, и суммирование которых полностью восстанавливает исходный сигнал. На рис. 10.1.1 приведен пример сигнала (А), его комплексного спектра (В) и получения четной и нечетной части сигнала из реальной и мнимой части спектра (С).

Рис. 10.1.1. Сигнал, спектральная плотность сигнала, четная и нечетная составляющие.

Аналитический сигнал. Можно выполнить обратное преобразование Фурье и в другой форме - раздельно для положительных и отрицательных частот спектра:

s(t) =S(w)·exp(jwt) dw + S(w)·exp(jwt) dw. (10.1.1)

Информация в комплексном спектре сигнала является избыточной. В силу комплексной сопряженности полную информацию о сигнале s(t) содержит как левая (отрицательные частоты), так и правая (положительные частоты) часть спектра S(w). Аналитическим сигналом, отображающим вещественный сигнал s(t), называют второй интеграл выражения (10.1.1), нормированный на p, т.е. обратное преобразование Фурье спектра сигнала s(t) по положительным частотам:

zs(t) = . (10.1.2)

Дуальность свойств преобразования Фурье определяет, что аналитический сигнал zs(t), полученный из односторонней спектральной функции, всегда является комплексным и может быть представлен в виде:

zs(t) = Re z(t) + j·Im z(t).

Аналогичное преобразование первого интеграла выражения (10.1.1) дает сигнал zs*(t), комплексно сопряженный с сигналом z(t):

zs*(t) = Re z(t) - j·Im z(t),

что наглядно видно на рис. 10.1.2 при восстановлении сигналов по односторонним частям спектра, приведенного на рис. 10.1.1-В.

Рис. 10.1.2. Сигналы z(t) и z*(t).

При сложении функций zs(t) и zs*(t) с учетом нормировки в (10.1.2) только на 1/π, а не на 1/2π, как в (10.1.1), мы обязаны получить полный исходный сигнал s(t):

s(t) = [zs(t)+zs*(t)]/2 = Re z(t).

Отсюда следует, что реальная часть аналитического сигнала zs(t) равна самому сигналу s(t).

Реальная и мнимая части спектра произвольных каузальных сигналов связаны преобразованием Гильберта. Оно позволяет производить определение любой части частотной характеристики каузальной функции, действительной или мнимой, путем свертки другой ее части с оператором Гильберта 1/pf. Аналогично, мнимая часть аналитического сигнала zs(t) является аналитически сопряженной с его действительной частью Re z(t) = s(t) через преобразование Гильберта, и называется квадратурным дополнением сигнала s(t):

Im(z(t)) = = TH[s(t)] = s(t) * hb(t), (10.1.3)

hb(t) = 1/(πt),

zs(t) = s(t) + jЧ . (10.1.4)

где индексом обозначен сигнал, аналитически сопряженный с сигналом s(t), hb(t) – оператор Гильберта.

Таким образом, квадратурное дополнение сигнала s(t) представляет собой свертку сигнала s(t) с оператором 1/(πt) и может быть выполнено линейной системой с постоянными параметрами:

= , (10.1.3')

Аналитический сигнал зависит от действительного аргумента, является однозначным и дифференцируемым. На комплексной плоскости он отображается вектором, модуль и фазовый угол которого изменяются от аргумента, а проекция сигнала на вещественную ось для любого значения аргумента равна значению исходного сигнала s(t). Какой-либо новой информации аналитический сигнал не несет, так как получен линейным преобразованием из исходного сигнала и представляет собой его новую математическую модель.

Почему именно оператор Гильберта применяется для получения квадратурного дополнения сигнала? Какую физическую операцию он выполняет? Ответ на этот вопрос может быть получен при рассмотрении спектра аналитического сигнала.

Спектральная плотность аналитического сигнала, если он сформирован непосредственно во временной области, определяется обычным преобразованием Фурье:

Zs(w) = zs(t) exp(-jwt) dt.

Эта функция, с учетом определения аналитического сигнала по выражению (10.1.2), должна быть отлична от нуля только в области положительных частот, где ее значения (в силу нормировки на p, а не на 2p) должны быть равны удвоенным значениям спектральной плотности сигнала s(t):

Zs(w) = (10.1.5)

С другой стороны, при непосредственном преобразовании Фурье левой и правой части формулы (10.1.4) аналитического сигнала zs(t), получаем:

Zs(w) = S(w) + j. (10.1.6)

Данное выражение действительно для всей частотной оси (от -Ґ до +Ґ ) и должно быть равно выражению (10.1.5). А это означает, что левая часть спектра (отрицательные частоты w) сигнала (10.1.6) должна быть обращена в ноль, аналогично формированию каузальной функции из ее четной и нечетной части. Это может быть выполнено следующим образом.

Рис. 10.1.3.

Если левые части спектра сигнала S(w) умножить на -1, обнулить реальную часть на частоте w=0 и оставить без изменения правые части спектра, то будут получены функции, показанные пунктиром на рис. 10.1.3), которые дают нули в левой части спектра при сложении с исходной функцией S(w) и увеличивают в 2 раза правые части спектра. Такая операция может быть выполнена умножением спектра S(w) на сигнатурную функцию sgn(w):

sgn(w) = (10.1.7)

Однако при этом реальная часть новой функции sgn(w)·S(w), как это можно видеть на рис. 10.1.3, становится нечетной, а мнимая часть четной, что не соответствует статусу спектральных функций. Для восстановления статуса полученный результат нужно дополнительно умножить на –j. Применяя для левой и правой части частотных аргументов индексирование соответственно wl и wr, можно записать подробные выражения для спектров:

S(w) = Re S(wl) + j·Im(wl) + Re S(wr) + j·Im(wr),

= j·Re S(wl) - Im(wl) - j·Re S(wr) + Im(wr).

При умножении квадратурной функции на j (для выражения в (10.1.6)):

= -Re S(wl) - j·Im(wl) + Re S(wr) + j·Im(wr).

Отсюда нетрудно видеть результат:

Zs(w) = S(w) + j = = 2·Re S(wr) + j·2·Im(wr) = 2·S(wr),

что полностью соответствует выражению (10.1.5). В краткой форме:

= = -jЧ sgn(w)Ч S(w), (10.1.8)

Hb(w) = -jЧ sgn(w) = (10.1.9)

Таким образом, спектральная плотность аналитически сопряженного сигнала образуется из спектра S(w) исходного сигнала s(t) умножением на функцию -jЧ sgn(w). Это обеспечивает при суммировании S(w) + j удвоение амплитуд частотных составляющих в области положительных частот и их взаимную компенсацию в области отрицательных частот.

Из выражения (10.1.8) в спектральной области непосредственно следует соответствующая связь функций s(t) и во временной области:

= s(t) * hb(t), (10.1.10)

s(t) = -* hb(t). (10.1.11)

где hb(t) = TF[-jЧ sgn(w)] = 1/(pt) – обратное преобразование Фурье функции -jЧ sgn(w).

Пример преобразования сигнала x(t) оператором Гильберта для формирования аналитического сигнала zx(t) = x(t) + j· приведен на рис. 10.1.4.

Частотную характеристику оператора Гильберта (10.1.9) можно записать и в следующем виде:

Hb(w) = |Hb(w)|Ч exp(jjh(w)), где |Hb(w)| = 1.

Hb(w) = -jЧ sgn(w) = , (10.1.12)

Если спектр функции x(t) также представить в форме

S(w) = |S(w)|Ч exp(jjs(w)),

то выражение (10.1.8) преобразуется к следующей форме:

= |S(w)|Ч exp(jjs(w))Ч exp(jjh(w)) = |S(w)|Ч exp[j(js(w)+jh(w))], (10.1.8')

т.е. модуль |S(w)| - амплитудный спектр сигнала как результат преобразования Гильберта сигнала s(t), не изменяется и остается равным амплитудному спектру сигнала s(t). Фазовый спектр сигнала (начальные фазовые углы всех гармонических составляющих сигнала) сдвигается на -90о при w > 0 и на 90о при w < 0 относительно фазового спектра сигнала s(t). Но такой фазовый сдвиг означает не что иное, как превращение косинусных гармоник в синусные, а синусных в косинусные. Это можно наглядно видеть на единичной гармонике. Так, если x(t) = cos(2pfot), то имеем следующее преобразование Гильберта через частотную область:

(t) = TH[x(t)] Ы TF[TH[x(t)]] = -j sgn(f)Ч [d(f+fo)+d(f-fo)]/2.

(f) = -jЧ [-d(f+fo)+d(f-fo)]/2 = j·[d(f+fo)-d(f-fo)]/2.

Но последнее уравнение - спектр синусоиды. При обратном преобразовании Фурье:

(t) = TF-1[(f)] = sin(2pfot).

При x(t) = sin(2pfot) аналогичная операция дает (t) = -cos(2pfot). Знак минус демонстрирует отставание (запаздывание) выходного сигнала преобразования, как операции свертки, от входного сигнала. Для гармонических сигналов любой частоты с любой начальной фазой это запаздывание составляет четверть периода колебаний. На рис. 10.1.5 этот сдвиг на четверть периода для единичной гармонической составляющей (несущей частоты радиоимпульса) виден достаточно наглядно.

Таким образом, аналитический сигнал, по существу, представляет собой двух ортогональных сигналов, все гармонические составляющие которых сдвинуты по фазе на 900 друг относительно друга.

10.2. Примеры применения аналитических сигналов [1,2].

Огибающая и мгновенная фаза сигналов. Допустим, что имеем зарегистрированный радиоимпульсный сигнал x(t) с несущей частотой wo, который содержит определенную информацию, заключенную в огибающей сигнала u(t) и его фазе j(t):

x(t) = u(t) cos (wot+j(t)). (10.2.1)

Требуется выделить информационные составляющие сигнала

Запишем выражение (10.2.1) в другой форме:

x(t) = a(t)Ч cos(wot) + b(t)Ч sin(wot), (10.2.2)

где функции a(t) и b(t) называются низкочастотными квадратурными составляющими сигнала x(t):

a(t) = u(t) cos jt, b(t) = u(t) sin jt.

u(t) =, tg j(t) = b(t)/a(t).

С использованием преобразования Гильберта из сигнала x(t) можно сформировать аналитически сопряженный сигнал (t). Математическую форму сигнала (t) получим из выражения (10.2.2) с учетом свойства модуляции преобразования Гильберта:

(t) = a(t)Ч sin(wоt) – b(t)Ч cos(wot).

z(t) = x(t) + jЧ (t).

Квадрат модуля сигнала z(t):

|z(t)|2 = x2(t)+2(t) = a2(t)[cos2(wot)+sin2(wot)] + b2(t)[cos2(wot)+sin2(wot)] = u2(t).

Отсюда, огибающая u(t) и мгновенная фаза f(t) сигнала x(t):

u(t) =. (10.2.3)

f(t) = wot+j(t) = arctg[(t)/x(t)]. (10.2.4)

j(t) = f(t) - mot.

Мгновенная частота сигнала определяется по скорости изменения мгновенной фазы:

df(t)/dt = . (10.2.5)

Рис. 10.2.1.

Для амплитудно-модулированных сигналов с одной несущей частотой эти результаты достаточно очевидны (см. рис. 10.2.1). Но выражения (10.2.3-10.2.5), полученные из общих соображений, остаются действительными и для любых произвольных сигналов.

На рис. 10.2.2. представлен сигнал, сложенный двумя гармониками:

x(t) = a(t)Ч cos(w1t) + b(t)Ч cos(w2t).

Квадратурное дополнение и аналитический сигнал:

(t) = a(t)Ч sin(w1t) + b(t)Ч sin(w1t).

z(t) = x(t) + jЧ (t).

Рис. 10.2.2.

Огибающая такого сигнала, как это можно видеть на рисунке 10.2.2, должна вычисляться по формуле (10.2.3). При этом для данного сигнала получаем:

u(t) =,

что может существенно отличаться от функции .

Мгновенная фаза сигнала, график которой приведен на рис. 10.2.3, зависит от времени нелинейно:

f(t) = .

 

Рис. 10.2.3. Рис. 10.2.4.

Мгновенная частота сигнала (рис. 10.2.4) также имеет нелинейную зависимость от времени, причем ее значения могут существенно превышать даже суммарное значение частот, составляющих сигнал:

w(t) = .

Аналогичная методика определения огибающих, мгновенных значений фазы и частоты применяется и для анализа случайных процессов.

Огибающие модулированных сигналов. В качестве примера применения огибающих рассмотрим связь форм относительно узкополосных радиосигналов с формой модулирующих сообщений.

Амплитудная модуляция. Уравнение модулированного сигнала:

x(t) = UoЧ [1+mЧ s(t)]Ч cos wot, s(t) Ј 1, m Ј 1

Квадратурное дополнение и аналитический сигнал:

(t) = UoЧ [1+mЧ s(t)]Ч sin wot, zx(t) = x(t) + j(t).

Огибающая сигнала x(t):

u(t) = |zx(t)| = UoЧ [1+mЧ s(t)],

т.е. точно повторяет форму модулирующего сообщения (см. рис. 10.2.5)

Рис. 10.2.5. Амплитудная модуляция.

Балансная модуляция. Уравнение модулированного сигнала, приведенного на рис. 10.2.6:

x(t) = UoЧ s(t)Ч cos wot,

Квадратурное дополнение, аналитический сигнал, огибающая сигнала x(t):

(t) = UoЧ s(t)Ч sin wot, zx(t) = x(t) + j(t), u(t) = |zx(t)| = UoЧ |s(t)|.

Огибающая сигнала x(t) существенно отличается от модулирующего сообщения, но связана с ним простым соотношением.

Рис. 10.2.6. Балансная модуляция.

Анализ каузальных систем. Каузальная (физически осуществимая) линейная система задается односторонним импульсным откликом h(t), t і 0, и имеет частотную характеристику H(f):

H(f) = X(f) - jY(f),

Осуществим обратное преобразование Фурье для всех частей выражения раздельно:

h(t) = x(t) + y(t),

x(t) =X(f) cos(2pft) df,

y(t) =Y(f) sin(2pft) df,

где x(t) и y(t) - четная и нечетная части функции h(t). Нечетная функция y(t) в каузальной системе однозначно связана с четной функцией x(t):

y(t) = sgn(t)Ч x(t). (10.2.6)

Осуществляя обратное преобразование Фурье обеих частей равенства (10.2.6) при известном преобразовании сигнатурной функции (sgn(t) Ы -j/(pf)), получаем:

TF[y(t)] = (-j/pf) * X(f) = (-j/p)[X(u)/(f-u)] du.

Отсюда:

Y(f) = (1/p)[X(u)/(f-u)] du = ТН[X(f)],

т.е. мнимая часть спектра импульсного отклика каузальной системы (и любой каузальной функции) является преобразованием Гильберта действительной части спектра. Соответственно, уравнение для определения действительной компоненты спектра по мнимой части:

X(f) = -ТН[Y(f)] = -(1/p)[Y(u)/(f-u)] dv.

литература

1. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 1988.

2. Бендат Дж., Пирсол А. Прикладной анализ случайных данных. – М.: Мир, 1989. – 540 с.

25. Сергиенко А.Б. Цифровая обработка сигналов. – СПб.: Питер, 2003. – 608 с.

Copyright ©2005 Davydov А.V.

к оглавлению


Знаете ли Вы, что электромагнитное и другие поля есть различные типы колебаний, деформаций и вариаций давления в эфире.

Понятие же "физического вакуума" в релятивистской квантовой теории поля подразумевает, что во-первых, он не имеет физической природы, в нем лишь виртуальные частицы у которых нет физической системы отсчета, это "фантомы", во-вторых, "физический вакуум" - это наинизшее состояние поля, "нуль-точка", что противоречит реальным фактам, так как, на самом деле, вся энергия материи содержится в эфире и нет иной энергии и иного носителя полей и вещества кроме самого эфира.

В отличие от лукавого понятия "физический вакуум", как бы совместимого с релятивизмом, понятие "эфир" подразумевает наличие базового уровня всей физической материи, имеющего как собственную систему отсчета (обнаруживаемую экспериментально, например, через фоновое космичекое излучение, - тепловое излучение самого эфира), так и являющимся носителем 100% энергии вселенной, а не "нуль-точкой" или "остаточными", "нулевыми колебаниями пространства". Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution