Французский математик. Родился в Осере, в девять лет остался сиротой. Получил образование в церковной школе и военном училище, затем работал преподавателем математики. На протяжении всей жизни активно занимался политикой, арестован в 1794 году за защиту жертв террора, выпущен из тюрьмы после смерти Робеспьера. Принимал участие в создании знаменитой Политехнической школы в Париже. Сопровождал Наполеона в Египет, был назначен губернатором Нижнего Египта. По возвращении во Францию в 1801 году назначен губернатором одной из провинций. В 1822 году стал постоянным секретарем Французской академии наук.
На первых этапах своего развития данное направление разложения функций, получившее название гармонического анализа, имело больше теоретический характер и использовалось, в основном, в естественных науках для выявления и изучения периодичности и состава периодических составляющих (в том числе скрытых) в различных явлениях и процессах (активность солнца, девиация магнитного поля Земли, метеорологические наблюдения, и т.п.). Положение резко изменилось с появлением электротехнических и радиотехнических отраслей науки и техники и развитием радиосвязи, где гармонический состав сигналов приобрел конкретный физический смысл, а математический аппарат спектрального преобразования функций стал основным инструментом анализа и синтеза сигналов. В настоящее время спектральный анализ является одним из основных методов обработки экспериментальных данных во многих отраслях науки и техники.
Спектральное преобразование функций, по существу, представляет собой представление функций в новой системе координат, т.е. перевод исходных функций на новый координатный базис. Выбор наиболее рациональной ортогональной системы координатного базиса функций, как правило, зависит от цели исследований и определяется стремлением максимального упрощения математического аппарата анализа, преобразований и обработки данных. В качестве базисных функций в настоящее время используются полиномы Чебышева, Эрмита, Лагерра, Лежандра и другие. Наибольшее распространение получило преобразование сигналов в базисах гармонических функций: комплексных экспоненциальных exp(j2pft) и вещественных тригонометрических синус-косинусных функций, связанных друг с другом формулой Эйлера. Это объясняется тем, что гармонические колебания является функциями времени, сохраняющими свою форму при прохождении через любую линейную цепь, изменяются только амплитуда и начальная фаза колебаний, что очень удобно для анализа систем преобразования сигналов.
Спектральный анализ часто называют частотным анализом. Термин "частотный" обязан происхождением обратной переменной f = 1/|t| временного представления сигналов и функций. Понятие частотного преобразования не следует связывать только с временными аргументами, т.к. математический аппарат преобразования не зависит от физического смысла независимых переменных. Так, например, при переменной "х", как единице длины, значение f будет представлять собой пространственную частоту с размерностью 1/|х| - число периодических изменений сигнала на единице длины.
В математическом аппарате частотного анализа удобно использовать угловую частоту w = 2pf. Для процессов по другим независимым переменным в технической литературе вместо индекса частоты f часто используется индекс v, а для угловой частоты индекс k = 2pv, который называют волновым числом.