Степень неопределенности состояния объекта (или так называемого источника информации) зависит не только от числа его возможных состояний, но и от вероятности этих состояний. При неравновероятных состояниях свобода выбора для источника ограничивается. Так, если из двух возможных состояний вероятность одного из них равна 0.999, то вероятность другого состояния соответственно равна 1-0.999 = 0.001, и при взаимодействии с таким источником результат практически предрешен.
В общем случае, в соответствии с теорией вероятностей, источник информации однозначно и полно характеризуется ансамблем состояний U = {u
1, u2,..., uN} с вероятностями состояний соответственно {р(u1), р(u2),..., р(uN)} при условии, что сумма вероятностей всех состояний равна 1. Мера количества информации, как неопределенности выбора дискретным источником состояния из ансамбля U, предложена К. Шенноном в 1946 году и получила название энтропии дискретного источника информации или энтропии конечного ансамбля:H(U) = -pn log2 pn. (1.4.2)
Выражение Шеннона совпадает с выражением Больцмана для энтропии физических систем при оценке степени разнообразия их состояний. Мера энтропии Шеннона является обобщением меры Хартли на случай ансамблей с неравновероятными состояниями, в чем нетрудно убедиться, если в выражении (1.4.2) значение p
n заменить значением p=1/N для ансамбля равновероятных состояний. Энтропия конечного ансамбля H(U) характеризует неопределенность, приходящуюся в среднем на одно состояние ансамбля.Учитывая, что в дальнейшем во всех математических выражениях, касающихся энтропии, мы будем использовать только двоичное основание логарифма, индекс 2 основания логарифма в формулах будем подразумевать по умолчанию.
ui |
pi |
ui |
pi |
ui |
pi |
ui |
pi |
ui |
pi |
а |
.064 |
з |
.015 |
о |
.096 |
х |
.009 |
э |
.003 |
б |
.015 |
и |
.064 |
п |
.024 |
ц |
.004 |
ю |
.007 |
в |
.039 |
й |
.010 |
р |
.041 |
ч |
.013 |
я |
.019 |
г |
.014 |
к |
.029 |
с |
.047 |
ш |
.006 |
- |
.124 |
д |
.026 |
л |
.036 |
т |
.056 |
щ |
.003 |
||
е,ё |
.074 |
м |
.026 |
у |
.021 |
ъ,ь |
.015 |
||
ж |
.008 |
н |
.056 |
ф |
.020 |
ы |
.016 |
Пример.
Вычислить энтропию ансамбля 32 букв русского алфавита. Вероятности использования букв приведены в таблице. Сравнить энтропию с неопределенностью, которая была бы у алфавита при равновероятном их использовании.Неопределенность на одну букву при равновероятности использования:
H(u) = log 32 = 5
Энтропия алфавита по ансамблю таблицы:
H(u) = - 0.064 log 0.064 - 0.015 log 0.015 - . . . . . . . . . . . . . . . . . . - 0.143 log 0.143
» 4.42.Таким образом, неравновероятность состояний снижает энтропию источника.
Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.
Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик Анри Пуанкаре, уже нельзя. Слишком много фактов противоречит этому.
Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.
Однако такая постановка является внутренне противоречивой (виртуальные частицы ненаблюдаемы и их по произволу можно считать в одном случае отсутствующими, а в другом - присутствующими) и противоречащей релятивизму (то есть отрицанию эфира, так как при наличии таких частиц в вакууме релятивизм уже просто невозможен). Подробнее читайте в FAQ по эфирной физике.