к оглавлению

Преобразования типа сигналов

Формы математического отображения сигналов, особенно на этапах их первичной регистрации (детектирования) и в прямых задачах описания геофизических полей и физических процессов, как правило, отражают их физическую природу. Однако последнее не является обязательным и зависит от методики измерений и технических средств детектирования, преобразования, передачи, хранения и обработки сигналов. На разных этапах процессов получения и обработки информации как материальное представление сигналов в устройствах регистрации и обработки, так и формы их математического описания при анализе данных, могут изменяться путем соответствующих операций преобразования типа сигналов.

Операция дискретизации (discretization) осуществляет преобразование аналоговых сигналов (функций), непрерывных по аргументу, в функции мгновенных значений сигналов по дискретному аргументу. Дискретизация обычно производится с постоянным шагом по аргументу (равномерная дискретизация), при этом s(t) Ю s(nDt), где значения s(nDt) представляют собой отсчеты функции s(t) в моменты времени t = nDt, n = 0, 1, 2,..., N. Частота, с которой выполняются замеры аналогового сигнала, называется частотой дискретизации. В общем случае, сетка отсчетов по аргументу может быть произвольной, как, например, s(t) Ю s(tk), k=1, 2, …, K, или задаваться по определенному закону. В результате дискретизации непрерывный (аналоговый) сигнал переводится в последовательность чисел.

Операция восстановления аналогового сигнала из его дискретного представления обратна операции дискретизации и представляет, по существу, интерполяцию данных.

Дискретизация сигналов может приводить к определенной потере информации о поведении сигналов в промежутках между отсчетами. Однако существуют условия, определенные теоремой Котельникова-Шеннона, согласно которым аналоговый сигнал с ограниченным частотным спектром может быть без потерь информации преобразован в дискретный сигнал, и затем абсолютно точно восстановлен по значениям своих дискретных отсчетов.

Как известно, любая непрерывная функция может быть разложена на конечном отрезке в ряд Фурье, т.е. представлена в спектральной форме - в виде суммы ряда синусоид с кратными (нумерованными) частотами с определенными амплитудами и фазами. У относительно гладких функций спектр быстро убывает (коэффициенты модуля спектра быстро стремятся к нулю). Для представления "изрезанных" функций, с разрывами и "изломами", нужны синусоиды с большими частотами. Говорят, что сигнал имеет ограниченный спектр, если после определенной частоты F все коэффициенты спектра равны нулю, т.е. сигнал представляется в виде конечной суммы ряда Фурье.

Теоремой Котельникова-Шеннона устанавливается, что если спектр сигнала ограничен частотой F, то после дискретизации сигнала с частотой не менее 2F можно восстановить исходный непрерывный сигнал по полученному цифровому сигналу абсолютно точно. Для этого нужно выполнить интерполяцию цифрового сигнала "между отсчетами" специальной функцией (Котельникова-Шеннона).

На практике эта теорема имеет огромное значение. Например, известно, что диапазон звуковых сигналов, воспринимаемых человеком, не превышает 20 кГц. Следовательно, при дискретизации записанных звуковых сигналов с частотой не менее 40 кГц мы можем точно восстановить исходный аналоговый сигнал по его цифровым отсчетам, что и выполняется в проигрывателях компакт-дисков для восстановления звука. Частота дискретизации звукового сигнала при записи на компакт-диск составляет 44100 Гц.

Операция квантования или аналого-цифрового преобразования (АЦП; английский термин Analog-to-Digital Converter, ADC) заключается в преобразовании дискретного сигнала s(tn) в цифровой сигнал s(n) = sn » s(tn), n = 0, 1, 2,.., N, как правило, кодированный в двоичной системе счисления. Процесс преобразования отсчетов сигнала в числа называется квантованием по уровню (quantization), а возникающие при этом потери информации за счет округления – ошибками или шумами квантования (quantization error, quantization noise).

При преобразовании аналогового сигнала непосредственно в цифровой сигнал операции дискретизации и квантования совмещаются.

Операция цифро-аналогового преобразования (ЦАП; Digital-to-Analog Converter, DAC) обратна операции квантования, при этом на выходе регистрируется либо дискретно-аналоговый сигнал s(tn), который имеет ступенчатую форму (рис. 1.2.4), либо непосредственно аналоговый сигнал s(t), который восстанавливается из s(tn), например, путем сглаживания.

Так как квантование сигналов всегда выполняется с определенной и неустранимой погрешностью (максимум - до половины интервала квантования), то операции АЦП и ЦАП не являются взаимно обратными с абсолютной точностью.

Алиасинг. А что произойдет, если спектр аналогового сигнала был неограниченным или имел частоту, выше частоты дискретизации?

Предположим, что при записи акустического сигнала оркестра в помещении от какого-то устройства присутствует ультразвуковой сигнал с частотой 30 кГц. Запись выполняется с дискретизацией сигнала на выходе микрофона с типовой частотой 44.1 кГц. При прослушивании такой записи с использованием ЦАП мы услышим шумовой сигнал на частоте 30 – 44.1/2 » 8 кГц. Восстановленный сигнал будет выглядеть так, как если бы частоты, лежащие выше половины частоты дискретизации, "зеркально" от нее отразились в нижнюю часть спектра и сложились с присутствующими там гармониками. Это так называемый эффект появления ложных (кажущихся) частот (aliasing). Эффект аналогичен всем известному эффекту обратного вращения колес автомобиля на экранах кино и телевизоров, когда скорость их вращения начинает превышать частоту смены кадров. Природу эффекта можно наглядно видеть на рис. 1.2.5. Аналогично в главный частотный диапазон дискретных сигналов "отражаются" от частоты дискретизации и все высокочастотные шумы, присутствующие в исходном аналоговом сигнале.

Для предотвращения алиасинга следует повышать частоту дискретизации или ограничить спектр сигнала перед оцифровкой фильтрами низких частот (НЧ-фильтры, low-pass filters), которые пропускают без изменения все частоты, ниже заданной, и подавляют в сигнале частоты, выше заданной. Эта граничная частота называется частотой среза (cutoff frequency) фильтра. Частота среза анти-алиасинговых фильтров устанавливается равной половине частоты дискретизации. В реальные АЦП почти всегда встраивается анти-алиасинговый фильтр.

Графическое отображение сигналов общеизвестно и особых пояснений не требует. Для одномерных сигналов график – это совокупность пар значений {t, s(t)} в прямоугольной системе координат (рис. 1.2.1 – 1.2.4). При графическом отображении дискретных и цифровых сигналов используется либо способ непосредственных дискретных отрезков соответствующей масштабной длины над осью аргумента, либо способ огибающей (плавной или ломанной) по значениям отсчетов. В силу непрерывности геофизических полей и, как правило, вторичности цифровых данных, получаемых дискретизацией и квантованием аналоговых сигналов, второй способ графического отображения будем считать основным.

Тестовые сигналы (test signal). В качестве тестовых сигналов, которые применяются при моделировании и исследовании систем обработки данных, обычно используются сигналы простейшего типа: гармонические синус-косинусные функции, дельта-функция и функция единичного скачка.

Дельта-функция или функция Дирака. По определению, дельта-функция описывается следующими математическими выражениями (в совокупности):

d(t-t) = 0 при t t,

d(t-t) dt = 1.

Функция d(t-t) не является дифференцируемой, и имеет размерность, обратную размерности ее аргумента, что непосредственно следует из безразмерности результата интегрирования. Значение дельта-функции равно нулю везде за исключением точки t, где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой, при этом площадь импульса равна 1.

Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать значение, равное бесконечности, в точке t = t на аналоговой временной шкале, т.е. определенной по времени также с бесконечной точностью. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе какой-либо системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.

При всей своей абстрактности дельта - функция имеет вполне определенный физический смысл. Представим себе импульсный сигнал прямоугольной формы П(t-t ) длительностью q , амплитуда которого равна 1/q , а площадь соответственно равна 1. При уменьшении значения длительности q импульс, сокращаясь по длительности, сохраняет свою площадь, равную 1, и возрастает по амплитуде. Предел такой операции при q Ю 0 и носит название дельта - импульса. Этот сигнал d(t-t) сосредоточен в одной координатной точке t = t, конкретное амплитудное значение сигнала не определено, но площадь (интеграл) остается равной 1. Это не мгновенное значение функции в точке t = t, а именно импульс (импульс силы в механике, импульс тока в электротехнике и т.п.) – математическая модель короткого действия, значение которого равно 1.

Дельта-функция обладает фильтрующим свойством. Суть его заключается в том, что если дельта-функция d(t-t) входит под интеграл какой-либо функции в качестве множителя, то результат интегрирования равен значению подынтегральной функции в точке t расположения дельта-импульса, т.е.:

f(t) d(t-t) dt = f(t).

Интегрирование в этом выражении может ограничиваться ближайшими окрестностями точки t.

Функция единичного скачка или функция Хевисайда иногда называется также функцией включения. Полное математическое выражение функции:

При моделировании сигналов и систем значение функции скачка в точке t=0 очень часто принимают равным 1, если это не имеет принципиального значения.

Функция единичного скачка используется при создании математических моделей сигналов конечной длительности. При умножении любой произвольной функции, в том числе периодической, на прямоугольный импульс, сформированный из двух последовательных функций единичного скачка

s(t) = s (t) - s (t-T),

из нее вырезается участок на интервале 0-Т, и обнуляются значения функции за пределами этого интервала.

Функция Кронекера. Для дискретных и цифровых систем разрешающая способность по аргументу сигнала определяется интервалом его дискретизации Dt. Это позволяет в качестве единичного импульса использовать дискретный интегральный аналог дельта-функции - функцию единичного отсчета d(kDt-nDt), которая равна 1 в координатной точке k = n, и нулю во всех остальных точках. Функция d(kDt-nDt) может быть определена для любых значений Dt = const, но только для целых значений координат k и n, поскольку других номеров отсчетов в дискретных функциях не существует.

Математические выражения d(t-t) и d(kDt-nDt) называют также импульсами Дирака и Кронекера. Однако, применяя такую терминологию, не будем забывать, что это не просто единичные импульсы в координатных точках t и nDt, а полномасштабные импульсные функции, определяющие как значения импульсов в определенных координатных точках, так и нулевые значения по всем остальным координатам, в пределе от -Ґ до Ґ.

к оглавлению


Знаете ли Вы, что релятивистское объяснение феномену CMB (космическому микроволновому излучению) придумал человек выдающейся фантазии Иосиф Шкловский (помните книжку миллионного тиража "Вселенная, жизнь, разум"?). Он выдвинул совершенно абсурдную идею, заключавшуюся в том, что это есть "реликтовое" излучение, оставшееся после "Большого Взрыва", то есть от момента "рождения" Вселенной. Хотя из простой логики следует, что Вселенная есть всё, а значит, у нее нет ни начала, ни конца... Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution