При анализе физических данных используются два основных подхода к созданию математических моделей сигналов.
Первый подход оперирует с детерминированными сигналами, значения которых в любой момент времени или в произвольной точке пространства (а равно и в зависимости от любых других аргументов) являются априорно известными или могут быть достаточно точно определены (вычислены). Такой подход удобен в прямых задачах геофизики (расчеты полей для заданных моделей сред), в задачах активных воздействий на среду при заранее известных параметрах и форме сигнала воздействия (вибрационная сейсморазведка, электромагнитные методы каротажа и пр.), а также при использовании хорошо известных и достоверных геолого-геофизических данных. Для описания неслучайных сигналов используются также квазидетерминированные модели, в которых значения одного или нескольких параметров априорно неизвестны, и считаются случайными величинами с малой случайной компонентой, влиянием которой можно пренебречь.
Второй подход предполагает случайный характер сигналов, закон изменения которых во времени (или в пространстве) носит случайный характер, и которые принимают конкретные значения с некоторой вероятностью. Модель такого сигнала представляет собой описание статистических характеристик случайного процесса путем задания законов распределения вероятностей, корреляционной функции, спектральной плотности энергии и др.
Случайность может быть обусловлена как собственной физической природой сигналов, что характерно, например, для методов ядерной геофизики, так и вероятностным характером регистрируемых сигналов как по времени или месту их появления, так и по содержанию. С этих позиций случайный сигнал может рассматриваться как отображение случайного по своей природе процесса или физических свойств объекта (процесса), которые определяются случайными параметрами или сложным строением геологической среды, результаты измерений в которой трудно предсказуемы.
Между этими двумя видами сигналов нет резкой границы. Строго говоря, детерминированных процессов и отвечающих им детерминированных сигналов в природе не существует. Даже сигналы, хорошо известные на входе в среду (при внешнем воздействии на нее), по месту
их регистрации всегда осложнены случайными помехами, влиянием дестабилизирующих факторов и априорно неизвестными параметрами и строением самой среды. С другой стороны, модель случайного поля часто аппроксимируется методом суперпозиции (сложения) сигналов известной формы. Детерминированные модели могут использоваться и для изучения чисто случайных процессов, если уровень полезного сигнала в этом процессе значительно выше уровня статистических флюктуаций, что имеет место, например, при регистрации ионизирующих излучений от горных пород.На выбор математической модели поля в том или ином методе геофизики в немалой степени влияет также сложность математического аппарата обработки сигналов и сложившиеся традиции геологической интерпретации результатов наблюдений. Не исключается и изменение модели, как правило, с переводом из вероятностной в детерминированную, в процессе накопления информации об изучаемом явлении или объекте.