Впервые этот эффект открыл (1933) и исследовал наш соотечественник Лев Александрович Юткин (5 августа (23 июля) 1911 - 5 октября 1980). Многие теоретические и практические основы этого эффекта, названного автором электро-гидравлическим эффектом (ЭГЭ), изложены в его книге. Юткин Л.А. Электрогидравлический эффект и его применение в промышленности. - Л.: Машиностроение, Ленингр. отд-ние, 1986. — 253 с, ил.
Электрогидравлический эффект представляет собой высоковольтный электрический разряд в жидкой среде. При формировании электрического разряда в жидкости выделение энергии происходит в течении достаточно короткого промежутка времени. Мощный высоковольтный электрический импульс с крутым передним фронтом вызывает различные физические явления. Такие как появление сверхвысоких импульсных гидравлических давлений, электромагнитное излучение в широком спектре частот вплоть, при определенных условиях, до рентгеновского, кавитационные явления. Указанные факторы оказывают на жидкость и помещенные в нее тела различные физико-химические воздействия.
Электрогидравлический разряд возникает при приложении к жидкости импульсного напряжения, достаточной амплитуды и длительности в результате чего развивается электрический пробой. Характерное время переднего фронта импульса тока разряда от долей микросекунды, до нескольких микросекунд.
Крутой передний фронт напряжения, прикладываемого к разрядному промежутку в жидкости, является отличительной чертой и непременным условием эффекта Юткина. Если фронт нарастания напряжения на разрядном промежутке в жидкости пологий, то возникающий импульс тока не приводит к желаемому эффекту. Почему так важна длительность переднего фронта? Все дело в том, что энергия, которая выделится за время нарастания импульса тока, и будет определять развитие всех эффектов, сопровождающих электрогидравлический разряд. Чем меньше будет длительность переднего фронта импульса, тем больше будет импульсный ток и пиковая мощность импульса.
Для формирования импульса с коротким передним фронтом напряжения, прикладываемого к разрядному промежутку в жидкости, Юткин использовал разрядный промежуток в газе - газовый разрядник, а для формирования определенной энергии импульса - накопительный электрический конденсатор.
Необходимо отметить, что процесс формирования разряда и его поведение зависит от того, какую полярность имеет "инициирующий" электрод. Например, величина пробивного напряжения на разрядном промежутке в воде, в зависимости от полярности, может отличаться в несколько раз.
Работа электрогидроимпульсной установки предполагает относительно медленный заряд накопительного конденсатора от источника питания высокого напряжения, затем, при достижении напряжения пробоя разрядника, происходит быстрый разряд конденсатора на разрядный промежуток в жидкости.
Для заряда накопительного конденсатора, в зависимости требуемых условий обработки, используется напряжение до 100 кВ
Юткин предложил разграничение трех режимов работы электрогидравлических установок в зависимости от напряжения и емкости накопительного конденсатора:
Необходимо помнить, что энергия запасенная в электрическом конденсаторе прямопропорциональна емкости этого конденсатора и прямо пропорциональна квадрату напряжения на конденсаторе.
Eкон = С*U2/2
Для заряда накопительного конденсатора может быть использован квазирезонансный высоковольтный источник питания с ограничением зарядного тока реактивным элементом.
В свое время была разработана и практически реализована такая схема построения электрогидравлической установки (патент на изобретение № 2207230 - Установка для электрогидравлической обработки). Заряд высоковольтного конденсатора происходит фиксированным током или фиксированной мощностью. При этом был обеспечен высокий к.п.д. и минимальные габариты разрядной установки.
Для формирования импульсов тока в электрогидравлических установках могут быть использованы различные виды разрядников и коммутаторов. Вакуумные, газонаполненные, игнитронные, тиристорные и т.п. Наиболее часто используются воздушные разрядники работающие при атмосферном давлении. При своей простоте и надежности они обладают существенными недостатками. Это нестабильное напряжение, значительное время деионизации, ограничивающее максимально допустимую частоту, высокий шум и генерация ионов. На пробивное напряжение открытых воздушных разрядников большое влияние оказывает влажность, герметичные газовые разрядники имеют малый срок службы. Для устранения или уменьшения влияния этих факторов приходится применять специальные меры. Сотрудниками ООО "ГТ-Электрофизика" была разработана специальная конструкция двухзазорного воздушного разрядника, обеспечивающая плавную регулировку напряжения пробоя разрядника, продув разрядного промежутка, обострение фронта пробоя и значительное уменьшение зависимости пробивного напряжения от условий окружающей среды.
Разрядник был использован в электрогидравлической установке для очистки от отложений труб, роликов и показал хорошие результаты.
Соратник и продолжатель дела Л.А. Уткина - |
Основные направления применения ЭГЭ в промышленности:
ЭГЭ нашел свое применение высоковольтный электрический разряд в жидкости в медицине. Например для дробления камней в почках.
Пробивное напряжение на зазоре в жидкости зависит от формы электродов, свойств жидкости и полярности напряжения на электроде с более высокой напряженностью. Для технической воды при использовании острого электрода отрицательной полярности средняя пробивная напряженность может составлять 1 кВ/см. В то же время, при положительной полярности это напряжение возрастает более, чем в 10 раз. При определенных условиях эта разница может быть заметно меньше. Такая разница в пробивной напряженности связана с разными механизмами развития высоковольтного пробоя в межэлектродном промежутке.