к библиотеке   к оглавлению   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

РЕАЛЬНАЯ ФИЗИКА

Пружинный маятник

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

F(t) = ma(t) = –mω2x(t).

В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:

Fупр = –kx.

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими. Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно (рис. 1), составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором.

Колебания груза на пружине. 1
Рисунок 1. Колебания груза на пружине. Трения нет.

Круговая частота ω0 свободных колебаний груза на пружине находится из второго закона динамики:

 Свободные колебания. Пружинный маятник

откуда

 Свободные колебания. Пружинный маятник

Частота ω0 называется собственной частотой колебательной системы. Период T гармонических колебаний груза на пружине равен

 Свободные колебания. Пружинный маятник

При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x0, равную

 Свободные колебания. Пружинный маятник

и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω0 и периода колебаний T справедливы и в этом случае.  Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x: ускорение является второй производной координаты тела x по времени t:

 Свободные колебания. Пружинный маятник

Поэтому второй закон динамики для груза на пружине может быть записан в виде

 Свободные колебания. Пружинный маятник

или

 
 Свободные колебания. Пружинный маятник
(*)

где  Свободные колебания. Пружинный маятник  Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида

x = xm cos (ωt + φ0).

Уравнение (*) называется уравнением свободных колебаний. Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω0 или период T. Такие параметры процесса колебаний, как амплитуда xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени. Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то xm = Δl, φ0 = 0. Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость ±v0, то

 Свободные колебания. Пружинный маятник Свободные колебания. Пружинный маятник

Таким образом, амплитуда xm свободных колебаний и его начальная фаза φ0 определяются начальными условиями. Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2 показан угловой аналог линейного гармонического осциллятора. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил Mупр упругой деформации кручения:

Mупр = –χθ.

Это соотношение выражает закон Гука для деформации кручения. Величина χ аналогична жесткости пружины k. Второй закон динамики для вращательного движения диска записывается в виде

 Свободные колебания. Пружинный маятник

где I = Icмомент инерции диска относительно оси, проходящий через центр масс, ε – угловое ускорение.  По аналогии с грузом на пружине можно получить:

 Свободные колебания. Пружинный маятник

Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.

Крутильный маятник
Рисунок 2. Крутильный маятник.
к библиотеке   к оглавлению   FAQ по эфирной физике   электротехника и электроника   электрические цепи  

Знаете ли Вы, что, как и всякая идолопоклонническая религия, релятивизм ложен в своей основе. Он противоречит фактам. Среди них такие:

1. Электромагнитная волна (в религиозной терминологии релятивизма - "свет") имеет строго постоянную скорость 300 тыс.км/с, абсурдно не отсчитываемую ни от чего. Реально ЭМ-волны имеют разную скорость в веществе (например, ~200 тыс км/с в стекле и ~3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью "Температура эфира и красные смещения"), разную скорость для разных частот (см. статью "О скорости ЭМ-волн")

2. В релятивизме "свет" есть мифическое явление само по себе, а не физическая волна, являющаяся волнением определенной физической среды. Релятивистский "свет" - это волнение ничего в ничем. У него нет среды-носителя колебаний.

3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.

4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те "подтверждающие теорию Эйнштейна факты", которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.

Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution