Проводники в электрических цепях могут соединяться последовательно и параллельно. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова:
I1 = I2 = I. |
![]() |
Рисунок 1. Последовательное соединение проводников. |
По закону Ома, напряжения U1 и U2 на проводниках равны
U1 = IR1, U2 = IR2. |
Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:
U = U1 + U2 = I(R1 + R2) = IR, |
где R – электрическое сопротивление всей цепи. Отсюда следует:
|
При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников. Этот результат справедлив для любого числа последовательно соединенных проводников. При параллельном соединении (рис. 2) напряжения U1 и U2 на обоих проводниках одинаковы:
U1 = U2 = U. |
Сумма токов I1 + I2, протекающих по обоим проводникам, равна току в неразветвленной цепи:
I = I1 + I2. |
Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд IΔt, а утекает от узла за то же время заряд I1Δt + I2Δt. Следовательно, I = I1 + I2.
![]() |
Рисунок 2. Параллельное соединение проводников. |
Записывая на основании закона Ома
![]() |
где R – электрическое сопротивление всей цепи, получим
|
При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников. Этот результат справедлив для любого числа параллельно включенных проводников. Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 3 приведен пример такой сложной цепи и указана последовательность вычислений.
![]() |
Рисунок 3. Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны в омах (Ом). |
Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.
![]() |
Рисунок 4. Пример электрической цепи, которая не сводится к комбинации последовательно и параллельно соединенных проводников. |
Цепи, подобные изображенной на рис. 4, а также цепи с разветвлениями, содержащие несколько источников, рассчитываются с помощью правил Кирхгофа.
Понятие же "физического вакуума" в релятивистской квантовой теории поля подразумевает, что во-первых, он не имеет физической природы, в нем лишь виртуальные частицы у которых нет физической системы отсчета, это "фантомы", во-вторых, "физический вакуум" - это наинизшее состояние поля, "нуль-точка", что противоречит реальным фактам, так как, на самом деле, вся энергия материи содержится в эфире и нет иной энергии и иного носителя полей и вещества кроме самого эфира.
В отличие от лукавого понятия "физический вакуум", как бы совместимого с релятивизмом, понятие "эфир" подразумевает наличие базового уровня всей физической материи, имеющего как собственную систему отсчета (обнаруживаемую экспериментально, например, через фоновое космичекое излучение, - тепловое излучение самого эфира), так и являющимся носителем 100% энергии вселенной, а не "нуль-точкой" или "остаточными", "нулевыми колебаниями пространства". Подробнее читайте в FAQ по эфирной физике.
|
![]() |