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A value of the finestructure constant at the unification energy is obtained by a dimensional analysis
of quantum gravity and fluid dynamics. The derivation assumes that the vacuum is a superfluid made
up of positive and negative Planck mass particles obeying an exactly nonrelativistic law of motion with
Lorentz invariance a low energy approximation. The dimensional analysis presented gives a value for
the finestructure constant in good agreement with the empirical value 1/a= 25,

1. Introduction

The first serious attempt to derive the finestructure
constant was made by Heisenberg with his nonlinear
spinor theory as a model for a fundamental field theory
[1]. At the time of Heisenberg’s attempt it was not
known that the finestructure constant is in reality not a
constant, but changes with energy, whereby the inverse
of this “constant” depends linearly on the logarithm of
the energy. Because of unavoidable divergences the the-
ory was abandoned. Heisenberg, however, showed us
how to proceed, not by numerological speculations but
by an understanding of the dynamics. What is true for
the electromagnetic coupling constant is true for the
strong coupling constant, except that with increasing
energy the electromagnetic coupling constant gets
stronger, while the strong coupling constant gets weak-
er. The getting stronger, resp. weaker results from the
screening resp. antiscreening of the interaction force
through virtual particles. At the energy where the strong
and electroweak interaction become equal, presumably
at the Planck energy, one has a = 1/25. With this value
of « the proton mass M is expressed in terms of the
Planck mass my, by (2]

Mim, = e, (1)

where k = 11/2 is a calculable factor computed from
the antiscreening of the strong force. The problem is
therefore reduced to obtain a value for M/m,, from
which one obtains
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By order of magnitude m/M = 10'%, which is a very
large nondimensional number. In classical fluid dynam-
ics one has critical Reynoldsnumbers as large as 4 x 10°
[3], but they are still far away from the nondimensional
number ~ 10'°. However, as will be shown, fluid dy-
namics in conjunction with quantum gravity, the latter
analytically continued to negative masses, can produce
such large nondimensional numbers.

2. Motivation

The recent discovery of a negative pressure medium
making up =70% of the energy in the physical universe,
with =26% in nonbaryonic cold dark matter, is in agree-
ment with a conjecture by the author [4] that the 70%
negative pressure energy and 26% nonbaryonic dark
matter is as in a superfluid, like superfluid helium,
where, if expressed in the Debye energy, the rotons have
a ~70% energy gap and ~25% kinetic energy. Since ro-
tons can be viewed as small vortex rings, a superfluid
with rotons acts like a fluid filled with cavitons, which
is known to have a negative pressure.

Further support for the idea that the vacuum is a kind
of fluid comes from the analogies between fluid dynam-
ics and general relativity [5-11]. Following Planck’s
postulate that physics should be reduced to h, G, and ¢
[12], and to account for a vanishing cosmological con-
stant, it is hypothesized that the vacuum is made up of
positive and negative Planck mass particles, forming a
kind of plasma, with the Planck mass particles locally
interacting over a Planck length by the Planck force, and
with all other particles explained as collective quasipar-
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ticle excitations of the Planck mass plasma [13, 14]. The
compensation of electric charges in condensed matter is
through charges of opposite sign. In the Planck mass
plasma there is a likewise compensation through mass-
es of opposite sign, making the cosmological constant
equal to zero. The observed residual cosmological con-
stant is then in reality the negative pressure energy,
mimicking a cosmological constant.

3. Vortex Model

The failure of the bosonic string theory in 26 dimen-
sions (dual resonance model) to describe nuclear forces
and its replacement by QCD in the 3 + 1 dimensions of
physics, suggests that the presently fashionable string
theories in higher dimensions may suffer a similar fate.
This prediction is supported by the analogies between
Yang-Mills theories and vortex dynamics [15], making
it plausible that string theories should be replaced by
some kind of vortex dynamics at the Planck scale.

In a superfluid made up of Planck mass particles,
with each Planck length volume occupied by a Planck
mass, there can be quantized vortices. With the quan-
tization condition myrv, = hi, the vortices are potential
vortices with the azimuthal velocity

vg=crylr, r>r,
=), TS T, 3)

where r,, is the Planck length.
A vortex ring of ring radius R and core radius r,has a
resonance frequency given by [16]

w, = {.‘rpi’Rz 4)
and if quantized the energy
hw, = myc® (ry/R)*. ®)

If the vacuum is occupied with an equal number of po-
sitive and negative Planck mass particles, the quantized
vortex solution is a double vortex where both mass com-
ponents share the same core. Because the positive kinet-
ic energy is there balanced by an equal negative kinetic
energy, such a double vortex can be created out of the
vacuum without expenditure of energy.

4. Vortex Lattice

In nonquantized fluid dynamics the vortex core has a
radius about equaling a mean free path A where the ve-
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locity reaches the velocity of sound, the latter about
equaling the thermal velocity v,. The Reynolds number
in the vortex core therefore is

Re = vriv=pAlv, (6)

where v is the kinematic viscosity. Since the kinematic
viscosity of a gas is of the order v~ », A, one has Re ~ 1.

Interpreting Schrédinger’s equation as an equation
with the imaginary viscosity vg = ih/2m,~ir,c, and
likewise defining for a frictionless quantum fluid a

quantum Reynolds number
Re™ = ivrivg, (7)

one finds with v = iryc that in the core of a quantized
vortex Re? ~ 1. For a dimensional analysis it is there-
fore sufficient to replace nonquantized with quantized
vortices. This permits us to translate the results obtained
for a vortex lattice in nonquantized fluid dynamics to a
lattice of quantized vortices. It is through the hydrody-
namic stability of such a vortex lattice that large nondi-
mensional numbers arise.

We first consider a lattice of line vortices, as they oc-
cur in the Karman vortex street [17]. The stability of this
configuration was analyzed by Schlayer [18], who
found that the radius ry of the vortex core must be relat-
ed to the distance of separation € between two line vor-
tices by

Fo = S AR (8)

Setting rp = r, and € = 2R, where R is the radius of the
vortex lattice cell occupied by one line vortex, on has

Rir,=147. 9)

For a quantum vortex the quantum viscosity inside the
core is vg = ir,c, and outside the core it is vo = 0. Av-
eraged over one cell it is ¥ = irpc (rp!R)z. With Re® =
icry/vg =1 inside the vortex core, the quantum Rey-
nolds number averaged over the volume of one cell is

Re%= (R/r,)? =2.15x 10%. (10)

No comparable stability calculation has been made
for a three-dimensional lattice of vortex rings, but we
can make some guesses. The instability apparently aris-
es from the fluid velocity of one vortex ring acting upon
an adjacent ring. At the distance R/r,,, the velocity of a
ring vortex is larger by the factor log (8 R/r,,) compared
to the velocity of a line vortex [17]. With R/r,, = 147 for
a line vortex, a better value for R/r;, can then be obtained
by solving for R/r, the equation

Rlr,= 147 log (8R/r,). (1D
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One finds

Rlr,= 1360 (12)

and Re®= (R/r,)* = 1.85x10°,

It was shown by the author [19] that the three-dimen-
sional vortex lattice has two wave modes, one mimick-
ing Maxwell’s electromagnetic and the other one
Einstein’s gravitational waves, thus unifying Maxwell’s
and Einstein’s equations.

5. Quantum Gravity

For a dimensional analysis the most elementary form
of quantum gravity is sufficient, except that we also al-
low negative masses. As it was shown by Bondi [20],
negative masses can be incorporated into general rela-
tivity. According to Honl and Papapetrou [21] negative
masses can explain the Dirac equation as the quantum
mechanical equation for a mass pole with a superim-
posed mass dipole (pole-dipole particle), and in the
framework of the Einstein-Maxwell equations it has
been shown by Bonner and Cooperstock [22] that the
electron must contain some negative mass. Negative
masses seem to be an impossibility in a relativistic
theory, but they are quite possible in an exactly non-
relativistic theory where the Hamilton operator com-
mutes with the particle number operator and where
Lorentz invariance can be a low energy dynamic sym-
metry [13, 14].

The postulated existence of negative masses permits
the generation of positive masses by the positive gravi-
tational interaction energy of a positive with a negative
mass. If the magnitude, not the sign, of two interacting
masses is equal, the interaction energy is (G Newton’s
constant)

E,= (13)

Glm. |’
=

In quantum gravity this equation has to be supplement-

ed by

(14)

|my| re=h,

assuming that the particles reach relativistic veloc-
ities. Setting E;, =mc?, r can be eliminated from

(13) and (14), and one finds for m (making use of

Gmf, = he):
(15)

m= G |m.|he =|m.|mg.

Instead of (15) one can write

|mlim = (mym)*>.

(16)

Setting my/m = my/M=10", one finds that m, =
+ 5% 10" GeV. Therefore, the gravitational interaction
energy of a large (5x10'? GeV) positive mass with a
likewise negative mass can produce a mass of the order
of the proton mass. The mass of 5x10'* GeV is of
course still much smaller than the Planck mass of
~10" GeV.

6. Quantum Gravity and Fluid Dynamics

Writing (16) in the form

m {M]‘ a7
mp my
we have in accordance with (5)
hw, = |m.|c® = myc* (ry/R)?, (18)
and thus from (17) and (18)
mimy, = (r,/R)°. (19)

We have assumed that the vortex resonance energy acts
like a quasiparticle, and since an equal number of
positive and negative Planck masses are present in the
vortex, the vortex resonance energy is double valued
with ﬁw,=trnpc2{rpz‘R)2. One therefore has m,==+
mp(rpr)z. Equating m in (19) with the proton mass M,
and inserting (19) into (2) one obtains

1 _12x R

—=—log|—|.

2]
For R/r, = 1360 one finds

l/a=24.38, (1)

in surprisingly good agreement with the empirical
value 1/a=25. The value 1/ =25 would be obtained
if Rir, = 1430.

7. Conclusion

The good agreement of the finestructure constant ob-
tained by a dimensional analysis of quantum gravity and
quantum fluid dynamics supports the Planck aether hy-
pothesis, which is the conjecture that the vacuum of
space is a kind of plasma consisting of positive and neg-
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ative Planck mass particles. In the computation of the
finestructure constant two very different disciplines of
physics have come together: Quantum gravity and hy-
drodynamic stability. To obtain an accurate value for ,
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