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MAKING A TUNNEL THROUGH THE MOON
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Abstract—The pressure in the center of the moon is estimated to be 50,000 atm at a temperature
of a few 10 K. Under these conditions a tunnel to the center of the moon seems possible, if dug
by a sequence of nuclear explosions, crushing the rocks through which the tunnel shall pass. The
crushed rocks reduce the pressure gradient in the tunnel wall and permit the removal of heat by
liquid metals. The number of required nuclear explosions, estimated to be several thousand, can
be substantially reduced by thermonuclear shape charges. © 2002 Elsevier Science Ltd. All rights

reserved

1. INTRODUCTION

The idea of making a tunnel to the center of the
moon with a chain of nuclear explosives was sug-
gested many years ago by the author in a semipop-
ular magazine [1] In this article, I did not give a
mathematical analysis of this concept which, at the
end of a rich and long scientific career, I now find
the time to supply.

The same concept, of course, could as well be
used to make a deep mine, perhaps as deep as ~
40 km. Quite apart from its scientific importance,
such a tunnel to the center of the moon could have
great economical benefits. It is generally believed
that heavy metals are concentrated in the center
of planetary bodies, where they are accumulated
during the liquid formative phase.

The idea to make a vertical tunnel into the moon
is shown schematically in Fig. 1. At the head of the
tunnel, a nuclear explosion is set off, shattering the
surrounding rocks relaxing the pressure gradient
through the buildup of large shear stresses. The
tunnel is then dug through the crushed rocks, with
the heat removed by liquid metals passing through
the pores in the crushed rock.

How deep the tunnel can be made depends on
the pressure rocks can withstand, which is below
100,000 atm. Since the pressure in the center of
the moon is less, a tunnel to the center of the moon
seems possible.
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fEspecially the planet Mercury, with its high specific density,
should be rich in heavy metals.

2. THE PRESSURE AND TEMPERATURE IN THE CENTER
OF THE MOON

The radius of the moon is R=1.74 % 10® cm, and the
gravitational acceleration at its surface gy == 1.62 x
10% cm/s. At a distance » < R from its center the
gravitational acceleration is

9g(r) = —go(r/R) (N
and the pressure balance equation is
dp r
& - Phog (2)

where p= p(r) is the pressure for » < R. The pres-
sure at the center therefore is

3)

R
I |
Pmax = ’(_k{("] /[] rdr= ) pyoR.

With p = 333 g/em? the average density of the
moon, one finds that pp. = 5 x 10" dyn/cm® =
50,000 atm.

The temperature 7' can be estimated from the
equation Py =nkT, where k=138 x 107'° erg/K
is the Boltzmann constant and # = 10% cm ™ the
atomic number density of the rocks. For pp, =35 x
10" dyn/cm? one finds 7 = 4 x 10° K.

3. SHATTERING OF THE LUNAR ROCKS BY NUCLEAR
EXPLOSIONS

The cohesive energy of the rocks is of the order

& =~ 10" erg/ecm?. Therefore, the explosive yield

needed to shatter a spherical volume of radius » is

E = (4n/3)e,r. (4)
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Fig. 1. Making a tunnel through the Moon.

The energy released in a kiloton nuclear explo-
sion is £ =4 x 10" erg. With this energy, the ra-
dius of the crushed rocks would be » = 10° ecm
(=10 m), and with a 10 kt explosion it would be
twice as large.

To make a tunnel, a cylindrical rather than spher-
ical volume of crushed rocks is desired. For this
reason a thermonuclear shape charge or an explo-
sive lens is better suited to shatter the rocks. This
possibility will be discussed below.

4. REMOVAL OF HEAT FROM THE CRUSHED HOT
ROCKS
In the center of the moon the temperature is several
thousand degrees centigrade. With the heat diffu-
sion equation given by
ar 5 ;
ot
where 7 is the heat diffusion coeflicient, the diffu-
sion time for a layer of thickness x is

o

t=x"/¥ (6)

For lunar rocks one has y = 4x 10~ cm?/s. Taking
the example y=20 m=2x 10* cm, one finds that t=
107 s = 30 yr, and at the high rock temperatures the
heat diffusion time would be uncomfortably long.

The situation is drastically changed for a layer
of crushed rocks, because there it is possible to
remove the heat by a coolant pumped through
the porous medium formed by the crushed rocks.
At the high temperatures of several thousand de-
grees centigrade, a liquid alkali metal, for example
lithium, abundantly available on the moon, could
be used as a coolant. The velocity the coolant
diffuses into the crushed rocks is determined by
Darcy’s law

v=—Dgrad p (7

where p is the pressure, D=/pg. with k ~ 1 cm/s
a typical value. If the pressure gradient is provided
by the gravitational force one has grad p = pg and

hence

[v]| =Kk ~ 1 cm/s. (8)
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Fig. 2. The sustaining of large shear stresses in a disperse
medium by frictional forces between the particles of the
medium.

The time needed for the liquid metal to pass through
a ~ 20 m thick layer is then ~ 2 x 10*s ~ 1 h.
The specific heat per unit volume of the coolant is
pey ~ 3 x 107 erg/em® K, and for T'=3 x 103 K,
one has pc, T ~ 10! erg/cm?.

The heat per unit volume which has to be re-
moved from the crushed rocks is of the order p,
where p is the rock pressure. In the center of the
moon where p =5 x 10" dyn/cm?, this energy
is 5 % 10'% erg/em?. It thus follows that the vol-
ume of the liquid coolant must be about 1/2 of
the rock volume to be cooled. For a rock volume
of (20m)* = 10* m?, a coolant volume of about
5 x 10* m* would be needed. The same coolant can
be used many times over after the heat is removed
from it, which could be done on the surface of the
moon by radiation, or perhaps better by heat ex-
changers transferring the heat to lunar sand.

5. PRESSURE DISTRIBUTION IN THE SHATTERED ROCKS
FOLLOWING A NUCLEAR EXPLOSION

Without a thick layer of shattered rocks surround-
ing the tunnel, the pressure acting on the tunnel
wall would be very large, in particular, in the center
of the moon. Because of friction between the par-
ticles of the shattered rock, large shear stresses can
be sustained changing the pressure distribution in
the rock reducing the pressure gradient and hence
the pressure on the tunnel wall.

This effect is shown in Fig. 2. If ¢ is the compres-
sive stress acting in some direction with regard to
the surface of a crushed rock particle, a shear stress
t parallel to its surface will be set up. This shear
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stress is compensated by a friction force acting in
equal and opposite direction of the shear as long as

%)

where p is the friction angle and ¢, the normal
component of the compressive stress a. If plotted
in the Mohr stress diagram, the maximum possible
shear cannot exceed the boundary line T = g tan p,
as shown in Fig. 3. For a compressive load ¢ is
negative and the boundary line T = atan p has a
negative slope. The maximum possible shear is

T < g, tan p,

Tmax — (amax - ﬂ'milfl)/z (10)
in the Mohr diagram given by
" Omax — Tmin
sinp=———. (11
R O max + T min )
Hence
Omin/Omax = tan’(45° — p/2) (12)

with this function plotted in Fig. 4. A typical
value for the friction angle is p = 45°, resulting in
gmin/o-max =00,

With o the stress tensor in the medium of the
crushed rocks, the static equilibrium equation is in
Cartesian coordinates given by

5
ooy

— =0. (13)
OXg

[n the posed problem, we assume cylindrical and

spherical symmetry, the latter for the geometry at

the lower end of the tunnel shaft. Introducing curvi-

linear coordinates the static equilibrium egn (13)

becomes

oty =0, (14)

where the colon stands for the covariant derivative.
For eqn (14) one can write

1 @ 1 :
-ﬁ ﬁ\—,ﬁ(\/.‘_f(f}i) — o =0
with the square of the line element ds® =gy dx’ dx*
defining the metric tensor and g = det g. The I}
are the Christoffel three index symbols of the sec-
ond kind.

In the cylindrical case, assuming d/d¢ = 0, we
have for a cylindrical r. ¢,z coordinate system
F]'l =), !"%l =1/r, and \/g =r. Here we find from
eqn (14)

(15)

da,
dr
where ¢} = 0,, 03 = 04, 03 =0, with o, and g,
the stress components in the » and ¢ directions.

r

(16)

+ 06— 045 =0,
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Fig. 3. Mohr stress diagram for disperse medium subject to fractional forces.
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Fig. 4. The dependence of Gyin/Tmax on the friction angle.

With 6,/64 = Omin/0max = 0.1, one obtains from
eqn (16)

(17)

Hence (putting o,(r) = p(r)) one obtains by inte-
grating (17)

p= po(r/ro)’, (18)

where pyg is the pressure at the tunnel wall and rqy
its radius.

In spherical coordinates of a, .' 0, ¢ spherical po-
lar coordinate syslcm one has I'}, =0, I, =T} =
1/r, and /g =2 sin 0. Here one finds that

do,
r— —26, —0p)=

dr (19)

with 6, /6y = Gpin/Gmax = 0.1 and one has

L TP (20)
dr
with the result that
p= polr/re)™ (21)

for the pressure distribution in the semispherical
cap of crushed rocks at the head of the tunnel.

Assuming that the pressure inside the tunnel
with radius ry at the center of the moon is of the
order 1 atm, but at a radius r > ry equal to the
50,000 atm, the radius of the crushed rock layer
must be related to the tunnel radius ry by r/ry =
(5 x 10%)"? = 3.3, Hence, for an assumed tunnel
radius of 20 m in the center of the moon, the layer
of crushed rocks would have to be 70 m thick.

The radius of the semispherical cap at the head
of the tunnel, computed from r/ry=(5 x 10*)"/1% =
2,is r ~ 40 m.

Farther away from the center of the moon the
pressure is smaller and with it the required layer
of crushed rocks, which in turn requires smaller
nuclear explosions to crush the rocks.

6. THE NUMBER OF NUCLEAR EXPLOSIONS REQUIRED
TO MAKE THE TUNNEL

Integrating eqn (2) one obtains for the pressure
distribution in the moon

/ -dr ‘”“(R-- ) (22)

for which one can also write

1= (1~ (5).

If rg is the horizontal radius up to which the rocks
at a certain depth have to be shattered (cylindrical

pr)=—57

(23)
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Fig. 5. A wave-shaping lens for conical implosion where the detonation lens produces a convergent conical wave.
IP is the ignition point of the thermonuclear explosive TE; B are the bubbles placed in the wave path; T is the
tamp; and R is a ray of the detonation wave.

case), one finds by equating p(r) in (18) and (23)

rs = ro( Pmax/ o) °(1 — (r/RP)'P.  (24)

The total energy required to shatter the rocks to
make a tunnel from the center at the moon where
r = 0, to its surface where » = R, is then given
by summing up over the slices with radius r, and
thickness dr

R

E = 1 Pmax/ Po)”” / (1= (/R dr,

S (25}

where as in eqn (4) & = 10" erg/cm? is the cohe-

sive binding energy of the rocks. For eqn (25) one
can write

1
E = mrgRer( Pmax/ Po )" / (1 —x*)*?dx. (26)
0

With the help of Euler’s betafunction one has

! - _ 111
_’2""0 — ,."IZ -, —
[U (1 =20 dx = (I, )3(2 9)

>~ \/n/2. (27)

Hence

E= (nj'lszz ]-"(%thr( Plnaxf‘rpﬂ)lﬂ}- (28)

Inserting ro = 2 x 10° ecm, R = 1.74 x 10% cm,
& = 10" erg/cm?®, puax/po = 5 x 10, one finds
that E 2 2 x 10** erg = 5 x 10% kt = 50 Mt.

[t must be emphasized that this energy must be
quite nonuniformly released along the tunnel shaft.
Nuclear fission explosions below a yield of 10 kt

become uneconomical with only a fraction of the
energy in the fissionable material (needed to make
a critical assembly) released. For a 10 kt fission
explosion the shatter radius computed from (4) is
~ 20 m. With a tunnel radius /4 ~ 10 m one would
have r/rp ~ 2 and from (24) that

]l — (!‘_;'JR} . 20( pt].-'jpmax ).

Putting for the depth of the tunnel (if measured

(29)

from the surface of the moon) 6 = R — r, with
d/R <1, one finds from (29) that
26/R = 2°(po/ pmax) = 1072 (30)

or that § = 10 km.

For a depth < 10 km the nuclear explosion with
a yield < 10 kt would suffice, a yield which is un-
economical. It is for this reason suggested to use
altogether thermonuclear explosive devices where
the cost per yield is much lower. To penetrate and
shatter the rocks more efficiently, jet-generating
thermonuclear explosive lenses could be used. A
design for such a lens configuration is shown in
Fig. 5 [2]. The thermonuclear detonation wave ig-
nited at one point is there shaped into a jet produc-
ing conical implosion by placing obstacles into the
path of the wave. The ignition can be done by a
fission explosive, but conceivably also by a power-
ful laser beam, with the laser beam projected down
the tunnel shafi, triggering the thermonuclear ex-
plosive positioned at the lower end.

With the above-given estimate of ~ 50 Mt
needed to dig the tunnel shaft, the number of ther-
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monuclear explosive devices making use of the
detonation wave lens technique could for this rea-
son be quite reasonable, and certainly much less
than the number of required fission explosives.

7. MAKING THE TUNNEL TO LAST

After nuclear explosions have crushed the rocks,
and the heat removed, the tunnel wall has to be
made from some kind of ceramic material, since
water with which to make concrete is not available
on the moon. But for the wall to last its tempera-
ture must be kept low. The low heat conductivity
of rocks, requiring little cooling, is there of con-
siderable help. For the crushed rocks the heat
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conduction coefficient should not be very different
than for solid rocks. According to eqn (6) the heat
diffusion time for a 20 m layer of rocks is =~ 30 yr.
This means that a small, continuous removal of
the heat through the injection and circulation of a
liquid metal into the crushed rocks should keep
down the temperature of the tunnel wall and its
environment.
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