Случайные процессы

Встроенные функции для генерации случайных чисел создают выборку из случайных данных АХ. Часто требуется создать непрерывную или дискретную случайную функцию A(t) одной или нескольких переменных (случайный процесс или случайное поле), значения которой будут упорядочены относительно своих переменных Создать псевдослучайный процесс можно способом, представленным в листинге 14 19

Листинг 14.19. Генерация псевдослучайного процесса

В первой строке листинга 14 19 определено количество N независимых случайных чисел, которые будут впоследствии сгенерированы, и радиус временной корреляции т В следующих трех строках определяются моменты времени тэ, которым будут отвечать случайные значения A(t.,) Создание нормального случайного процесса сводится к генерации обычным способом вектора независимых случайных чисел х и построению интерполяционной зависимости в промежутках между ними В листинге 14 19 используется сплайн-интерполяция (см гл 15)

Рис. 14.14. Псевдослучайный процесс (листинг 14.19)

В результате получается случайный процесс A(t), радиус корреляции которого определяется расстоянием т между точками, для которых строится интерполяция. График случайного процесса A(t) вместе с исходными случайными числами показан на рис. 14.14. Случайное поле можно создать несколько более сложным способом с помощью многомерной интерполяции.

К случайным процессам, сгенерированным таким способом, как и к данным эксперимента, применяются любые статистические методы обработки, например корреляционный или спектральный анализ. Приведем в качестве примера листинг 14.20, показывающий, как организовать расчет корреляционной функции случайного процесса.

Листинг 14.20. Дискретизация случайного процесса и вычисление корреляционной функции (продолжение листинга 14.19)

Дискретизация интервала <0,Tmax) для случайного процесса A(t) произведена с различным элементарным интервалом А (первая строка листинга). В зависимости от значения А, получается различный объем п выборки случайных чисел YL являющихся значениями случайной функции A(t) в точках дискретизации. В последних четырех строках определяются различные характеристики случайной величины Y, являющиеся, по сути, характеристиками случайного процесса A(t). График рассчитанной в 2 M+1 точках корреляционной функции R(j) показан на рис. 14.15.

Внимательному читателю предлагается самостоятельно ответить на вопрос: почему при таком расчете корреляционной функции ее значение R(0) не равно 1, как должно быть по определению?

Рис. 14.15. Корреляционная функция (листинги 14.19—14.20)

  

Знаете ли Вы, что cогласно релятивистской мифологии "гравитационное линзирование - это физическое явление, связанное с отклонением лучей света в поле тяжести. Гравитационные линзы обясняют образование кратных изображений одного и того же астрономического объекта (квазаров, галактик), когда на луч зрения от источника к наблюдателю попадает другая галактика или скопление галактик (собственно линза). В некоторых изображениях происходит усиление яркости оригинального источника." (Релятивисты приводят примеры искажения изображений галактик в качестве подтверждения ОТО - воздействия гравитации на свет)
При этом они забывают, что поле действия эффекта ОТО - это малые углы вблизи поверхности звезд, где на самом деле этот эффект не наблюдается (затменные двойные). Разница в шкалах явлений реального искажения изображений галактик и мифического отклонения вблизи звезд - 1011 раз. Приведу аналогию. Можно говорить о воздействии поверхностного натяжения на форму капель, но нельзя серьезно говорить о силе поверхностного натяжения, как о причине океанских приливов.
Эфирная физика находит ответ на наблюдаемое явление искажения изображений галактик. Это результат нагрева эфира вблизи галактик, изменения его плотности и, следовательно, изменения скорости света на галактических расстояниях вследствие преломления света в эфире различной плотности. Подтверждением термической природы искажения изображений галактик является прямая связь этого искажения с радиоизлучением пространства, то есть эфира в этом месте, смещение спектра CMB (космическое микроволновое излучение) в данном направлении в высокочастотную область. Подробнее читайте в FAQ по эфирной физике.

{DATA}
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution