Постановка задач. Классификация уравнений в частных производныхПостановка задач для уравнений в частных производных включает определение самого уравнения (или системы нескольких уравнений), а также необходимого количества краевых условий (число и характер задания которых определяется спецификой уравнения). По своему названию уравнения должны содержать частные производные неизвестной функции и (или нескольких функций, если уравнений несколько) по различным аргументам, например пространственной переменной х и времени t. Соответственно, для решения задачи требуется вычислить функцию нескольких переменных, например u<x,t) в некоторой области определения аргументов 0< х < L и 0< t < T. Граничные условия определяются как заданные временные зависимости функции и, или производных этой функции на границах расчетной области 0 и L, а начальные - как заданная u(х, 0). Сами уравнения в частных производных (несколько условно) можно разделить на три основных типа:
Некоторые более сложные уравнения нельзя однозначно подогнать под приведенную классификацию, тогда говорят о гибридных типах уравнений. |