Функции для решения жестких ОДУ

Решение жестких систем дифференциальных уравнений можно осуществить только с помощью встроенных функций, аналогичных по действию семейству рассмотренных выше функций для обычных ОДУ.

  • Radau(y0,t0,t1,M,F) — алгоритм RADAUS для жестких систем ОДУ;
  • stiffb(y0,t0,t1,M,F,j) — алгоритм Булирша-Штера для жестких систем ОДУ;
  • stiffr(y0,t0,t1,M,F,j) — алгоритм Розенброка для жестких систем ОДУ;
    • у0 — вектор начальных значений в точке to;
    • t0.t1 — начальная и конечная точки расчета;
    • M— число шагов численного метода;
    • F — векторная функция F(t,y) размера IXN, задающая систему ОДУ;
    • J- матричная функция J(t,y) размера (N+DXN, составленная из вектора производных функции F(t,y) no t (правый столбец) и ее якобиана (N левых столбцов).

Как Вы можете заметить, для двух последних функций серьезным отличием от функций, решающих нежесткие системы, является добавление к стандартному набору параметров дополнительной матричной функции, задающей якобиан системы ОДУ. Решение выдается в виде матрицы, по форме идентичной аналогичным функциям решения нежестких задач Коши.

Покажем действие этих алгоритмов на том же примере жесткой системы ОДУ химической кинетики (листинг 11.14). Обратите внимание, как следует представлять в данном случае якобиан, сравнив задание матричной функции в предпоследней строке листинга 11.14 с заданием якобиана из листинга 11.13.

Листинг 11.14. Решение жесткой системы ОДУ химической кинетики

Расчеты показывают, что для получения того же результата (см. рис. 11.18) оказалось достаточно в тысячу раз меньшего количества шагов численного алгоритма, чем для стандартного метода Рунге-Кутты! Примерно во столько же раз требуется меньше компьютерного времени на проведение расчетов. Стоит ли говорить, что, если Вы имеете дело с жесткими (в той или иной степени) системами, применение описанных специальных алгоритмов просто необходимо.

Важно заметить, что до сих пор мы имели дело с примером не очень жесткой системы. Попробуйте вместо скоростей упомянутых химических реакций (см. разд. 11.5.1), 0.1, 103 и 102 взять другие числа, например 0.05, 10 и 107, соответственно. Заметим, что такое соотношение скоростей часто встречается в прикладных задачах химической кинетики и определяет куда более жесткую систему ОДУ. Ее уже никак не удается решить стандартными методами, поскольку число шагов численного метода должно быть просто гигантским. А между тем, алгоритмы для жестких ОДУ справляются с этой задачей с легкостью (рис. 11.19), причем практически при тех же значениях шага, что были взяты в листинге 11.14. Обратите внимание, что порядки величины решений для концентраций различных веществ на рис. 11.19 различаются еще сильнее, чем в предыдущем (менее жестком) примере.

Это еще раз доказывает, что одна и та же система ОДУ с различными коэффициентами может быть жесткой в разной степени В частности, приведенный выше пример генератора Ван дер Поля с параметром ц=5000 — это уже пример жесткой задачи.

В заключение приведем соответствующие встроенные функции, которые применяются для решения жестких систем ОДУ не на всем интервале, а только в одной заданной точке t1.

  • radau(y0, t0, t1,acc,F,k,s) —метод RADAUS
  • stiffb(y0,t0,t1,acc,F,j,k,s) — метод Булирша-Штера
  • stiffr(y0,t0,t1,acc,F,j,k,s) —метод Розенброка

Имена этих функций пишутся с маленькой буквы, а их действие и набор параметров полностью аналогичны рассмотренным нами ранее для функций, относящихся к решению в заданной точке нежестких систем (см. разд. 11.3.2). Отличие заключается в специфике применяемого алгоритма и необходимости задания матричной функции якобиана j(t,y).

Рис. 11.19. Решение более жесткой системы ОДУ химической кинетики методом Розенброка

  

Знаете ли Вы, что такое "Большой Взрыв"?
Согласно рупору релятивистской идеологии Википедии "Большой взрыв (англ. Big Bang) - это космологическая модель, описывающая раннее развитие Вселенной, а именно - начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения..."
В этой тираде количество нонсенсов (бессмыслиц) больше, чем количество предложений, иначе просто трудно запутать сознание обывателя до такой степени, чтобы он поверил в эту ахинею.
На самом деле взорваться что-либо может только в уже имеющемся пространстве.
Без этого никакого взрыва в принципе быть не может, так как "взрыв" - понятие, применимое только внутри уже имеющегося пространства. А раз так, то есть, если пространство вселенной уже было до БВ, то БВ не может быть началом Вселенной в принципе. Это во-первых.
Во-вторых, Вселенная - это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве. У нее нет начала и конца, а также пространственных границ уже по ее определению: она есть всё (потому и называется Вселенной).
В третьих, фраза "представление о холодной начальной Вселенной вблизи Большого взрыва" тоже есть сплошной нонсенс.
Что могло быть "вблизи Большого взрыва", если самой Вселенной там еще не было? Подробнее читайте в FAQ по эфирной физике.

{DATA}
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution