Функции создания матриц

Самым наглядным способом создания матрицы или вектора является применение первой кнопки панели инструментов Matrix (Матрицы) (см. разд. "Массивы" гл. 4). Однако в большинстве случаев, в частности при программировании сложных проектов, удобнее бывает создавать массивы с помощью встроенных функций.

Определение элементов матрицы через функцию

  • matrix(M,N,f) — создание матрицы размера MXN, каждый i,j элемент которой есть f (i, j) (листинг 9.19);
    • м — количество строк;
    • N — количество столбцов;
    • f (i, j) — фуНКЦИЯ.

Листинг 9.19. Создание матрицы

Для создания матриц имеются еще две специфические функции, применяемые, в основном, для быстрого и эффектного представления каких-либо зависимостей в виде трехмерных графиков (типа поверхности или пространственной кривой). Все их аргументы, кроме первого (функции), необязательны. Рассмотрим первую из функций.

  • СгеаtеSрасе(F(или f1, f2, f3) , t0, t1, tgrid, fmap) — создание вложенного массива, представляющего х-, у- и z-координаты параметрической пространственной кривой, заданной функцией р;
    • F(t) — векторная функция из трех элементов, заданная параметрически относительно единственного аргумента t;
    • f1(t) ,f2(t), f3(t) — скалярные функции;
    • t0 — нижний предел t (по умолчанию -5);
    • t1 — верхний предел t (по умолчанию 5);
    • tgrid — число точек сетки по переменной t (по умолчанию 2о);
    • fmap — векторная функция от трех аргументов, задающая преобразование координат.

О вложенных массивах читайте в разд. "Создание тензора" гл. 4.

Рис. 9.4. Использование функции CreateSpace с разным набором параметров

Пример использования функции CreateSpace показан на рис. 9.4. Заметьте, для построения графика спирали не потребовалось никакого дополнительного кода, кроме определения параметрической зависимости в вектор-функции F!

Функция создания матрицы для графика трехмерной поверхности устроена совершенно аналогично, за тем исключением, что для определения поверхности требуется не одна, а две переменных. Пример ее использования иллюстрирует рис. 9.5.

Рис. 9.5. Использование функции CreateMesh с разным набором параметров

  • CreateMesh(F(или g, или f1, f2, f3) , s0, s1, t0, t1, sgrid, tgrid, fmap) - создание вложенного массива, представляющего х-, у- и z-координаты параметрической поверхности, заданной функцией F;
    • F(s,t) — векторная функция из трех элементов, заданная параметрически относительно двух аргументов s и t;
    • g (s, t) — скалярная функция;
    • f1(s,t),f2(s,t),f3(s,t) — скалярные функции;
    • s0, t0 — нижние пределы аргументов s, t (по умолчанию -5);
    • s1, t1 — верхние пределы аргументов s, t (по умолчанию 5);
    • sgrid, tgrid — число точек сетки по переменным s и t (по умолчанию 20);
    • fmap — векторная функция из трех элементов от трех аргументов, задающая преобразование координат.

Примеры вложенных массивов, которые создаются функциями createMesh и createspace, приведены в листинге 9.20. Каждая матрица из числа трех вложенных матриц, образующих массив, определяет х-, у- и z-координаты точек поверхности или кривой, соответственно.

Листинг 9.20. Результат действия функций CreateMeeh и CreateSpace (рис. 9.4 - 9.5)

Создание матриц специального вида

В Mathcad легко создать матрицы определенного вида с помощью одной из встроенных функций. Примеры использования этих функций приведены в листинге 9.21.

  • identity (N) — единичная матрица размера NXN;
  • diag(v) — диагональная матрица, на диагонали которой находятся элементы вектора v;
  • geninv(A) — создание матрицы, обратной (слева) матрице А;
  • rref (A) — преобразование матрицы или вектора А в ступенчатый вид;
    • N — целое число;
    • v — вектор;
    • А —матрица из действительных чисел.

Размер NXM матрицы А для функции geninv должен быть таким, чтобы N>M.

Листинг 9.21. Создание матриц специального вида

  

Знаете ли Вы, почему "черные дыры" - фикция?
Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда".
На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли.
Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма.
Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал:
"Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985]
Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.

{DATA}
Bourabai Research Institution home page

Bourabai Research - Технологии XXI века Bourabai Research Institution