Для соединения клиентского приложения с сервером в локальной сети использован компонент
srvrCon класса TDCOMConnection. Данный тип соединения выбран как наиболее простой и требующий лишь наличия локальной сети или даже не требующий ничего — в демонстрационном приложении можно использовать сервер приложения, установленный на этом же компьютере.
Для настройки соединения компонента SrvrCon в свойстве
ComputerName было указано имя компьютера сервера. После этого в списке свойства
ServerName можно выбрать один из доступных зарегистрированных серверов. В нашем случае это сервер simpieAppSrvr.simpieRDM, имя которого состоит из имени приложения сервера и имени главного удаленного модуля данных.
Обратите внимание, что в этом же списке имеется и дочерний модуль
Secondary. Однако для получения доступа к наборам данных дочернего модуля данных мы не будем создавать еще одно соединение, а воспользуемся компонентом
TSharedConnection, т. к. он специально предназначен для подобных случаев. Для его настройки достаточно указать в свойстве
Parentconnection компонент соединения. В нашем случае — это
srvrCon.
Для компонента srvrCon предусмотрены два метода-обработчика (см. листинг 22.1) — после подключения и перед отключением соединения. В них открываются и закрываются все наборы данных клиентского приложения.
Теперь в клиентском приложении доступны наборы данных обоих удаленных модулей данных сервера приложений.
Непосредственно подключение к серверу осуществляется кнопкой Соединение. При ее нажатии выполняется следующий простой код:
on E: Exception do MessageDlg(E.Message, mtError, [mbOK], O);
end;
SetCtrlState;
end;
-Соединение закрывается, задается новое имя компьютера сервера, соединение открывается. Специально созданный метод формы
setctristate управляет доступностью кнопок формы, анализируя текущее состояние наборов данных.
Знаете ли Вы, почему "черные дыры" - фикция? Согласно релятивистской мифологии, "чёрная дыра - это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда". На самом деле миф о черных дырах есть порождение мифа о фотоне - пушечном ядре. Этот миф родился еще в античные времена. Математическое развитие он получил в трудах Исаака Ньютона в виде корпускулярной теории света. Корпускуле света приписывалась масса. Из этого следовало, что при высоких ускорениях свободного падения возможен поворот траектории луча света вспять, по параболе, как это происходит с пушечным ядром в гравитационном поле Земли. Отсюда родились сказки о "радиусе Шварцшильда", "черных дырах Хокинга" и прочих безудержных фантазиях пропагандистов релятивизма. Впрочем, эти сказки несколько древнее. В 1795 году математик Пьер Симон Лаплас писал: "Если бы диаметр светящейся звезды с той же плотностью, что и Земля, в 250 раз превосходил бы диаметр Солнца, то вследствие притяжения звезды ни один из испущенных ею лучей не смог бы дойти до нас; следовательно, не исключено, что самые большие из светящихся тел по этой причине являются невидимыми." [цитата по Брагинский В.Б., Полнарёв А. Г. Удивительная гравитация. - М., Наука, 1985] Однако, как выяснилось в 20-м веке, фотон не обладает массой и не может взаимодействовать с гравитационным полем как весомое вещество. Фотон - это квантованная электромагнитная волна, то есть даже не объект, а процесс. А процессы не могут иметь веса, так как они не являются вещественными объектами. Это всего-лишь движение некоторой среды. (сравните с аналогами: движение воды, движение воздуха, колебания почвы). Подробнее читайте в FAQ по эфирной физике.