к содержанию

1.5. Электроны и атомы

Электроны и атомы представляют собой разные формы микрозавихрений эфира, И те и другие состоят исключительно из эфирных шариков, и никаких иных элементарных частиц в них нет. Кроме набора некоторого количества эфирных шариков для их построения требуются ещё два условия: наличие энергии и избыточное давление эфирной среды. Эти условия создаются и удачно сочетаются в моменты, исключительно важные для истории Вселенной, — в моменты столкновений эфирных облаков; тогда появляются на Свет первичные электроны и атомы; вторичные возникают в результате распада атомов, в частности электроны в основной своей массе появляются именно таким образом, и поставляет их нам в огромных количествах наше светило — Солнце: там распад атомов происходит более интенсивно, чем на планетах.

Электрон. Разберемся сначала с электронами, то есть с теми частицами, направленное движение которых известно как электрический ток. Если заставить три смежных элементарных шарика бегать друг за другом по кругу и ускорять их бег, то при достижении определённой скорости они приобретут устойчивое вращательное состояние; это и есть электрон. Он обречён на существование по двум причинам: его шарики не могут разбежаться, потому что сдавлены по периферии эфирной средой с избыточной плотностью, а остановиться не могут, так как не испытывают никакого трения. В конструкцию электрона, кроме указанных трёх бегающих шариков, входят ещё два торцовых, которые замыкают электрон и как бы являются его осью. В результате получается что-то вроде вращающегося колесика или волчка.

Масса вещества в электроне составляет всего пять эфирных шариков, но его инерция значительно больше их суммарной инерции; и возникает это увеличение за счёт вращения. В результате инерция электрона в пересчёте на принятый эталон массы составляет 9,11 на 10 в минус двадцать восьмой степени грамма.

Средняя плотность эфирных шариков в том пространстве, которое занимает электрон, меньше плотности окружающей эфирной среды. Это следует из закона неравномерных деформаций эфирных шариков: каждый бегающий по кругу электронный шарик удерживается на своей орбите центростремительным ускорением, создаваемым наружным окружением, и поэтому имеет увеличенную деформацию в точках контакта с ним, изнутри же он практически нисколько не сдеформирован, так как его осевые шарики замыкаются сами на себе и на него не давят; отсюда следует, что отмеченная неравномерность деформаций приводит к уменьшению его общей деформации, то есть к уменьшению средней плотности. Менее плотный электрон при наличии градиента эфирного давления будет вытесняться в сторону меньшего давления; и этим объясняется стремление электронов радиационного слоя Земли прорваться в виде молний к её поверхности.

Пониженная средняя эфирная плотность наблюдается не только в границах самого электрона, но и в его ближайших окрестностях: его окружают два накладывающихся одно на другое стоячих тепловых поля. Первое из них создаётся бегающими шариками электрона: каждый из прилегающих шариков получает от них за оборот по три удара, направленных под углом в сторону вращения; в результате прилегающий к электрону слой эфирных шариков совершает небольшую радиальную пульсацию и закручивается в направлении вращения самого электрона. Радиальная пульсация распространяется на последующие слои эфирных шариков с уменьшением амплитуды в квадрате от удаления.

На первое поле накладывается второе; оно вызывается нестабильностью размеров электрона, выражающейся в периодическом изменении его диаметра: его бегающие шарики то удаляются друг от друга, то сближается. Такая неустойчивость вызвана тремя факторами: инерцией, отсутствием трения и противостоянием центробежных и центростремительных сил. Радиальная пульсация электрона порождает пульсирующее поле вокруг, подвижность которого убывает также в квадрате от удаления. Это поле более активное и более объёмное, и оно также закручено в направлении вращения электрона. Впрочем, его активность и размеры не постоянны и зависят от той энергии, которой располагает электрон; если эту энергию каким-либо образом отбирать, то второе стоячее тепловое поле будет съёживаться, а если, наоборот, электрон накачивать энергией (проще говоря — движениями), то оно будет увеличиваться.

Стоячие тепловые поля, если они не сориентированы особым образом, препятствуют сближению электронов; они образуют, своего рода, пружинящие оболочки, отталкивающиеся друг от друга. По этой причине электроны в образном сравнении можно представить пушистыми, как бывают пушистыми детские игрушки: сдавливая их, можно почувствовать, что они пружинят. Пушистые свойства электронов играют существенную роль в электрических и магнитных явлениях, и поэтому мы будем на них в дальнейшем неоднократно ссылаться.

Забегая вперёд, скажем, что атомы и молекулы всех газов также неустойчивы и также окружены стоячими тепловыми полями, как и электроны. Это даёт нам право считать, что электроны представляют собой газ со всеми его свойствами; законы движения электронов строго соответствуют законам пневматики. Сжимая пушистые электроны, можно создавать их давление, и оно — такое же, как давление газов; и это давление в электрофизике называют электрическим потенциалом или напряжением. Поток электронов можно представить в виде потока газа и характеризовать расходом в единицу времени, — это — так называемая сила тока (или просто ток) в электричестве. Сопротивление движению электронов (электрическое сопротивление) равноценно сопротивлению течению газа, а ёмкость ресивера газа подобна ёмкости конденсатора. И даже каналы, по которым движутся газы и электроны, схожи: у газов — это трубопровода, а у электронов желоба атомов металлов, перекрытые атомами и молекулами изоляторов; отличие только в том, что трубопроводы мы видим невооружённым глазом, а желоба не сможем рассмотреть даже в микроскоп: настолько они малы. Исходя из сходства электронов и газов, можно даже предположить, что электроны, как и газ, можно сжижать; если удалось бы осуществить это на практике, то, наверное, не было бы более энергоёмкого электроаккумулятора. В нормальных же условиях электроны, одетые в свои пушистые оболочки стоячих тепловых полей, не способны ни сжижаться, ни слипаться в твёрдые тела, и поэтому их иногда справедливо называют ещё пылью Вселенной.

И всё же есть у электронов одна особенность, отличающая их от газов: это — их стремление выстраиваться в цепочку. Для более внимательного рассмотрения этого явления представим себе чистое без атомов эфирное пространство с расположенными в нём всего только двумя электронами и отметим про себя, что каждый электрон со своим стоячим полем представляет собой дискообразное эфирное микрозавихрение. Окажись поблизости, оба эти микрозавихрения начнут воздействовать друг на друга таким образом, что будут выстраиваться параллельно с вращением в одну сторону; во всех других случаях они будут мешать друг другу. И как только они расположатся таким образом, так сразу сдвинутся настолько, насколько им позволят торцевые стороны стоячих тепловых полей и осевые шарики; в то же, время они сместятся до соосности. Произойдёт это по той причине, что в результате повышенного движения эфира между их дисками его давление там снизится (скажет своё слово закон неравномерных деформаций), в то время как снаружи оно сохранится прежним, и разность давлений сместит их в направлении друг к другу. По той же причине сближаются два листа бумаги, если продувать между ними воздух. Не трудно сообразить, что соосно расположенные, но встречно вращающиеся электроны будут отталкиваться, так как лобовое сопротивление их потоков создаст между ними повышенное давление.

Стремление к сближению соосных электронов, вращающихся в одном направлении, и к отталкиванию встречно вращающихся есть проявление магнетизма. Сам же электрон является элементарной магнитной частицей; любой магнит выстраивается из этих частиц. Электрон, как магнит, имеет полюса, определяемые направлением вращения: если один его торец вращается в одном направлении, то противоположный, естественно, — в обратном (при взгляде с разных сторон); отсюда — и разные полюса, и абсурдность поисков мономагнитов, имеющих, якобы, только по одному полюсу.

Выстраиваться в осевом направлении могут сколько угодно электронов; при большом их количестве собранная их них цепочка будет представлять собой вращающийся вокруг своей оси шнур — это и есть магнитная силовая линия; магнитные полюса у этого шнура проявляются только на его торцах. Прочность магнитного шнура не столь высока — сказывается помеха осевых шариков, из-за них электроны не могут сблизиться вплотную, — поэтому при незначительных внешних воздействиях шнур рассыпается.

Электрон, в отличие от эфирного шарика, имеет постоянно меняющееся внутреннее состояние, то есть он живёт, и у него, следовательно, есть внутреннее время, а у этого времени есть начало — момент рождения электрона. Ход внутреннего времени, определяемый частотой вращения, изменяется в зависимости от эфирного давления, то есть от избыточной плотности в окружающем эфирном пространстве: чем меньше плотность, тем ниже частота вращения электрона и тем медленнее идёт его внутреннее время. Снижение давления до критического значения, при котором электрон уже не может существовать и распадается, может возникать локально даже при обычных химических реакциях, в частности при горении. Кроме того электроны могут легко быть раздавлены чисто механически атомами и молекулами. В любом случае утверждение современной физики, что электрон очень живуч и что время его жизни в среднем составляет 10 в двадцать второй степени лет, кажется несколько преувеличенным. При распаде электрон порождает расходящиеся в разные стороны два кванта света, то есть две электромагнитные волны.

Завершая предварительный разговор об электроне, скажем, что у него не существует никакого мистического электрического заряда; есть только сам электрон — и ничего больше.

Атом. Конструкция атомов несколько сложнее, хотя строится она по тем же законам: возникают атомы, как и электроны, при столкновениях эфирных потоков на больших скоростях. Как это происходит — можно продемонстрировать на примере возникновения хорошо всем известного дымового колечка. Есть такой школьный опыт: наполняют ящик с отверстием дымом и ударяют по задней упругой стенке; при этом из ящика выбрасывается воздушный вихрь в виде кольца. Это и есть прообраз атома. Точно такие же по форме кольцеобразные микрозавихрения, представляющие собой атомы, возникают при столкновениях эфирных потоков, только размеры их несоизмеримо меньше.

В идеальном виде образующиеся кольцеобразные микрозавихрения эфира имеют вид тора с вращающейся оболочкой, состоящей из эфирных шариков. Устройство торовых оболочек атомов можно выразить через электроны. Представим себе магнитный шнур из соосно собранных электронов, вращающихся в одном направлении. Если убрать у них все осевые шарики, мешающие их полному сближению, то шнур окажется чрезвычайно крепким. Замкнув его разнополярные концы, получим торовую оболочку; это и есть атом. Следовательно, торовая оболочка атома состоит из замкнутого ряда строенных, бегающих друг за другом эфирных шариков.

Как и в случае с электроном, остановиться шарики оболочки атома не могут, потому что нет трения, а разбежаться не могут, так как сжаты избыточной плотностью окружающего эфира; по этой причине атомы обречены на существование; правда, одни из них, что покрепче, могут сохраняться долгое время, другие, — менее крепкие, более склонны к распаду.

Самым простым и наименьшим из всех известных является атом водорода: он представляет собой почти идеальный по форме тор; его правильная геометрия хоть и нарушается, но не столь значительно, как у других атомов. Его оболочка состоит приблизительно из 1840 бегающих строенных шариков, поэтому инерция атома водорода во столько же раз больше инерции электрона и составляет в масштабе эталона массы приблизительно 1,6 на 10 в минус двадцать четвёртой степени грамма. Всего в оболочке атома водорода насчитывается приблизительно 5,5 тысяч эфирных шариков. Диаметр сечения тора (у всех атомов это сечение одинаковое) равен диаметру электрона в плоскости вращения его шариков, а диаметр самого тора атома водорода приблизительно в 586 раз больше диаметра элементарного шарика.

Так выглядит атом водорода

Приблизительность, которую мы постоянно подчёркиваем, говорит о том, что атомы водорода могут быть чуть больше или чуть меньше, причём уменьшение его размеров имеет чёткий предел, определяемый упругостью шнура тела атома, а увеличение — теоретически не ограничено и могло бы продолжаться до того размера, когда из атома водорода получится атом следующего химического элемента, то есть гелия; но чрезмерно раздутые атомы водорода оказываются менее устойчивыми и чаще распадаются.

Вращающиеся торовые оболочки атомов закручивают вокруг себя прилегающий эфир, приводя его элементарные шарики в движение, и создают тем самым в нём пониженное давление; перепад давлений стремится сначала сплюснуть тор, а затем, если позволяют его размеры, скрутить его в ту или иную конфигурацию; так образуются атомы всех остальных, кроме водорода, химических элементов и их изотопов.

Процесс скручивания торовых оболочек, может быть, в какой-то степени и случаен, но в общем он подчиняется определённым закономерностям; точнее говоря, случайность сказывается на самом раннем этапе скручивания, то есть даёт толчок скручиванию, а далее события разворачиваются почти что закономерно и могут быть предсказаны логически. Образовавшаяся в результате столкновения эфирных потоков вращающаяся торовая оболочка едва ли будет с самого начала геометрически идеальной: те же эфирные потоки исказят тор уже при его рождении, — в этом как раз и состоит случайность, и этого оказывается достаточно, чтобы начался процесс скручивания.

Допустим, образовавшийся тор имеет диаметр в десятки раз больше диаметра тора водорода. Подвижность эфира, прилегающего к вращающейся торовой оболочке, будет внутри тора больше, чем снаружи; следовательно, внешнее давление попытается сжать тор. Теоретически идеальный тор, если рассматривать его как обычное металлическое кольцо, будет противостоять сжатию, но, оказавшись в силу случайности чуть-чуть сплюснутым, тор потеряет свою устойчивость и станет из кольца превращаться сначала в овал, а потом — в восьмёрку. Края восьмёрки, случайно изогнувшись, начнут далее сближаться уже по закону: между сближающимися краями давление эфира будет всё время падать. Скручивание тора будет продолжаться и далее, при этом могут возникать самые замысловатые конфигурации; и завершится процесс формирования атома только тогда, когда стремящиеся друг к другу участки шнура не придут в полное соприкосновение, а петли на их концах не уменьшатся до минимально допустимого размера, определяемого упругостью шнура. К слову, конечная конфигурация атома будет иметь минимум потенциальной энергии, или, другими словами, зона возбуждённого атомом эфира окажется наименьшей.

Так в общих чертах выглядит процесс возникновения атома и приобретения им своей законченной формы. Этот процесс можно моделировать с помощью того же дымового кольца: все закономерности скручивания атома в равной степени присущи и дымовому кольцу. Разница, пожалуй, состоит только в том, что атом формируется стремительно, по нашим меркам — почти мгновенно, а дымовое кольцо будет скручиваться в течение секунд и даже дольше.

У скрученного атома можно выделить три характерных элемента: петлю, спаренные шнуры и переходную зону. Из них только петля и спаренные шнуры активно участвуют в формировании атома и в соединении атомов между собой; переходные же зоны в этом отношении почти нейтральны. Важно отметить, что все радиусы изгибов шнуров практически одинаковы, и определяются они упругостью шнура; поэтому и формы и размеры петель у всех атомов одни и те же. Обратим внимание ещё на то, что шнуры — всегда парны: их общее количество измеряется чётным числом; так парами они и соединяются в пучки, приобретая при полном сближении устойчивое состояние. Количество петель в атоме в большинстве случаев тоже определяется чётным числом, но бывают и исключения; и характер их соединения несколько иной.

Если, рассматривая петлю, обратить внимание на направление вращения её шнура, то можно отметить, что обе её стороны выглядят по-разному: одна сторона образует как бы всасывающую воронку, а другая — выталкивающую; и ведут себя эти стороны соответствующим образом: всасывающая воронка стремится присосать к себе, а выталкивавшая — оттолкнуть. Самое прочное соединение образуется в том случае, если две петли соединились присасывающими сторонами; при этом их присасывающие способности полностью нейтрализуются. Но не все петли атома имеют возможность состыковаться друг с другом — иногда конфигурация не позволяет, — и тогда их присасывающие воронки остаются открытыми для соединения с воронками других атомов; в результате образуются межатомные связи. Атомы, соединённые между собой присасывающими воронками, образуют очень прочную молекулу. Открытые петли атомов с присасыващими сторонами образуют одну из разновидностей химической валентности; это, пожалуй, — самая главная валентность и самая чёткая из них: она либо есть, либо её нету.

Другим видом валентности является жёлоб, то есть присасывающая сторона спаренных шнуров. У них направления вращения — всегда встречные, или как говорят механики — паразитные; иначе и быть не может: только при таких направлениях вращения шнуры будут стремиться к сближению. В пучок могут входить два, четыре и другое чётное число шнуров; и на каждую пару будет приходиться один присасывающий жёлоб: у двух сблизившихся шнуров он — один, у четырёх — два, и так далее.

С помощью присасывающих желобов атомы могут соединяться друг с другом. Такая способность — то же валентность, но в отличие от петлевой у жёлоба она не столь однозначна: соединение желобов разных атомов между собою может быть самым замысловатым. Решающее значение имеет длина жёлоба: чем он длиннее, тем больше у него возможностей присоединить к себе несколько более коротких желобов (при условии, если конфигурация атома позволяет это сделать), тем, разумеется, выше его валентность. Сказывается и удобство соединения: если жёлоб ничем не загорожен, то он открыт для свободного соединения; если же он расположен не столь удачно, то и возможностей для соединения у него меньше; совсем же закрытые желоба в соединении атомов не участвуют. Петли и желоба между собою не контактируют.

 

Наиболее агрессивны те атомы, у которых имеются полностью открытые присасывавшие петли; такие атомы стремятся соединиться с любыми другими атомами, имеющими подобные петли. С ними очень легко соединяется водород: форму его атома также можно считать петлевой. Если атомы имеют достаточно много присасывающих участков — желобов и петель, — то они могут объединяться в большие колонии, образуя тем самым твёрдые тела и в том числе кристаллы. Если же атомы и молекулы соединяются между собой только желобами и эти соединения непрочны, то при определённой своей активности они ведут себя как жидкости, то есть имеют возможность смещаться относительно друг друга. По этому признаку металлы могут быть причислены также к жидкостям: их атомы соединяются исключительно желобами, а прочность соединений уменьшается с ростом температуры.

Особым образом ведут себя атомы и молекулы газов. Нельзя говорить, что они не имеют или имеют слабовыраженные присасывающие участки и поэтому, дескать, не слипаются. Причиной их особого поведения является наличие вокруг каждого из них стоячего теплового поля, о котором уже упоминалось выше. Атомы и молекулы газов неустойчивы и пульсируют, возбуждая вокруг себя прилегающее эфирное пространство; это делает их “пушистыми”, и они никак не хотят сближаться. Преодолеть “пушистость” атом или молекула газа может только под действием внешнего толчка; поэтому-то газы вступают в реакцию только при высоком давлении, при высокой температуре, под действием жёсткого излучения и при других подобных воздействиях.

Возвращаясь к твёрдым телам, отметим, что их поверхностный слой атомов остаётся неприкрытым: присасывающие участки этих атомов сохраняются оголёнными; поэтому поверхность тел всегда активна. И иногда эта активность принимает формы агрессивности, как например у кристаллов бора. И только вездесущие электроны умеряют пыл такой агрессии: они буквально облепляют оголённые петли и желоба и практически нейтрализуют их.

Взаимоотношения электронов и атомов не ограничиваются только налипанием на присасывающие места поверхностей тел; электроны, как очень мелкие частицы, способны проникать внутрь тел и даже внутрь отдельных атомов и застревать там; ведь и атомы сами по себе, и тела из них представляют собой решётчатые (пористые) конструкции с относительно большими ячейками.

Особые отношения у электронов с атомами металлов. У последних присасывающие желоба тянутся по всему периметру и замыкаются сами на себе; поэтому прилипшие к ним электроны могут совершать безпрепятственные передвижения вокруг атомов; а с учетом того, что атомы металлов соединяются между собой теми же желобами, то у электронов есть возможность, перепрыгивая с атома на атом, легко смещаться вдоль всего тела; это уже — электрический ток. Для сравнения: электрон, попавший в присасывающую воронку петли атома диэлектрика, чувствует себя как в западне: выскочить ему оттуда нелегко и смещаться вдоль тел, состоящих из подобных атомов, он не может. Для того, чтобы оторвать от присасывающей петли атома прилипший к ней электрон, требуется определённое усилие (иногда оно, правда, небольшое), и также нелегко отрывается электрон от желобов металлов (а смещается вдоль по ним, повторим, очень и очень легко).

Металлы отличаются ещё и тем, что в конфигурациях их атомов практически нет прямых участков — атом металла похож на клубок редко намотанной пряжи, — поэтому эфирные волны легко отражаются от их поверхностей, создавая характерный блеск. Атомы других материалов, как правило, имеют прямые участки жгутов и по-другому реагируют на эфирные волны: они их поглощают и возвращают в эфир уже с собственной частотой; они “звучат” на разных частотах, как натянутые струны различной длины; этим самым определяется цвет материалов.

Об инерции атома водорода мы уже говорили; инерции атомов других химических элементов могут быть определены из пропорции их атомных весов. Инерция атомов – величина неизменная, чего нельзя сказать про гравитацию. Учитывая, что возмущённый атомными вихрями прилегающий эфир насыщается дополнительной пустотой, гравитация в результате окажется несколько большей. У разных атомов эта прибавка разная, и зависит она от конфигурации атомов.

С гравитацией атомов связано и такое понятие, как их вес. Долгое время мы считали, что он определяется двумя факторами: собственной массой и притяжением планеты. Теперь мы говорим, что притяжения нет совсем, а масса может быть либо инерционной, либо гравитационной. Вес атома, в нашем представлении, определяется его массой гравитации и градиентом эфирного давления.

Из всего сказанного про вес атома следует несколько неожиданные на первый взгляд выводы: во-первых, не планета притягивает атом, а космос выдавливает его в направлении к центру планеты, и во-вторых, чем больше атом, тем он, условно говоря, легче. Давайте на этом пока остановимся и договоримся вернуться к более детальному рассмотрению понятия веса несколько позже.

Завершим наше знакомство с атомами констатацией того, что у них, как и у электронов, есть своё внутреннее время, и объясняется это также тем, что у атомов есть постоянно изменяющееся внутреннее состояние, выражающееся во вращении его оболочки. Есть у времени атома и точка отсчёта, когда он возник, и есть конец его существованию, когда он распадается или трансформируется в другой атом. Распад атомов может происходить по двум причинам: во-первых, в результате снижения избыточной плотности окружающего эфира до критического значения, и тогда ничего от атома не останется; и во-вторых, в результате силового разрыва; при этом шнур тела атома может оказаться разорванным на несколько кусков, самых различных по величине. Крупные фрагменты шнура, если им позволит их длина, замкнутся в кольца и превратятся снова в атомы или изотопы, но уже других химических элементов. Те части, что помельче, будут стремиться при любом подходящем случае состыковаться между собой в конце концов также замкнуться в кольцо. Но а те мелкие обрывки, что не смогли этого сделать, так и останутся сами собой. Можно даже представить, как ведут себя эти неприкаянные куски вращающихся шнуров: испытывая крайнюю продольную неустойчивость, они будут извиваться подобно червям. О них можно сказать еще то, что их форма и поведение соответствуют магнитной силовой линии.

Самыми мелкими частями разорванных атомов будут электроны. Если же и они окажутся разрушенными, то ничего кроме квантов света от них, как мы уже говорили, не останется. Все эти виды обрывков атомов в огромных количествах извергаются Солнцем и как ветер разносятся по космосу; часть этого солнечного ветра достигает Земли и оседает в верхних слоях её атмосферы.

к содержанию

Знаете ли Вы, в чем фокус эксперимента Майкельсона?

Эксперимент А. Майкельсона, Майкельсона - Морли - действительно является цирковым фокусом, загипнотизировавшим физиков на 120 лет.

Дело в том, что в его постановке и выводах произведена подмена, аналогичная подмене в школьной шуточной задачке на сообразительность, в которой спрашивается:
- Cколько яблок на березе, если на одной ветке их 5, на другой ветке - 10 и так далее
При этом внимание учеников намеренно отвлекается от того основополагающего факта, что на березе яблоки не растут, в принципе.

В эксперименте Майкельсона ставится вопрос о движении эфира относительно покоящегося в лабораторной системе интерферометра. Однако, если мы ищем эфир, как базовую материю, из которой состоит всё вещество интерферометра, лаборатории, да и Земли в целом, то, естественно, эфир тоже будет неподвижен, так как земное вещество есть всего навсего определенным образом структурированный эфир, и никак не может двигаться относительно самого себя.

Удивительно, что этот цирковой трюк овладел на 120 лет умами физиков на полном серьезе, хотя его прототипы есть в сказках-небылицах всех народов всех времен, включая барона Мюнхаузена, вытащившего себя за волосы из болота, и призванных показать детям возможные жульничества и тем защитить их во взрослой жизни. Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution