Оглавление   Ударный метаморфизм   Архитектоника Земли   Е.В. Дмитриев   Б. И. Каторгин  

Книга 1. Ядерные испытания в Арктике

Том II. Арктический ядерный полигон

Посвящается 50-летию создания испытательного полигона на Новой Земле.
под общей редакцией научного руководителя РФЯЦ ВНИИЭФ академика РАН В.Н. Михайлова
Институт стратегической стабильности Федеральное агентство по атомной энергии (Росатом).
Федеральное управление медико-биологических и экстремальных проблем при Министерстве здравоохранения и социального развития Российской Федерации
© Институт стратегической стабильности, 2004 г.
Запрещается любым способом воспроизводить, передавать, распространять или использовать в коммерческих целях настоящую публикацию.

ЧАСТЬ 2

ЯДЕРНЫЕ ВЗРЫВЫ НА АКВАТОРИИ ГУБЫ ЧЕРНОЙ

член-корр. РАН Адушкин В.В., д.т.н. Христофоров Б.Д.

В проведении подводных и надводных ядерных взрывов в губе Черная участвовали и сотрудники нашего института. Их итогом было создание флота с атомным вооружением, от которого в то время не было надежных средств защиты. Это обеспечило на долгие годы мирное существование в условиях ядерного противостояния великих Держав. В настоящее время полученные данные и результаты их последующей обработки используются при совершенствовании методов контроля за ядерными взрывами и моделировании разнообразных геофизических процессов взрывного типа, включая природные и техногенные катастрофы [1-4].

 

Осенью 1955, 1957 и 1961 г в губе Черной на Новой Земле были проведены 3 подводных взрыва торпед с атомным зарядом в интересах ВМФ и прибрежный взрыв, которые сопровождались испытаниями военной техники. На акватории были установлены (отслужившие свой срок) корабли, подводные лодки, гидросамолеты, плоты, с установленной на них измерительной аппаратурой, на берегу сооружены казематы с высокоскоростной фоторегистрирующей и иной аппаратурой. В 1961 и 1962 были проведены надводные взрывы торпед. В 1955 г торпеда была подвешена на глубине 12 м с судна, которое было уничтожено взрывом, в 1957, 1961, 1962 г. торпеды с атомным зарядом выпускались с подводных лодок со стороны устья бухты. Взрывы проводились при глубине акватории до 60 м. В таблице 1 приведены основные характеристики проведенных атомных взрывов (Время Московское).

Целью работ являлось отработка атомных зарядов и вооружения ВМФ, определение основных физических характеристик и поражающих факторов подводных ядерных взрывов на мелководье, испытания военной техники с применением специально разработанной измерительной аппаратуры.

Программа научных исследований и приборных разработок, в которых участвовали наши сотрудники, включала измерения параметров ударной волны и акустических возмущений в воде, воздухе и грунте, развития султана, базисной, гравитационной волн и других поверхностных явлений, выхода продуктов деления и радиационной обстановки в воде и окружающей местности. По этим данным определялись основные характеристики взрыва, его тротиловый эквивалент и поражающее действие, тестировались разработанные теоретические модели подводного взрыва.

Таблица 1.

Дата, время
Энергия, кт
Глубина (высота), м
Координаты

Подводные взрывы

1

21.09.55; 08:00:54

3.5

12

70.70N, 54.67E

2

10.10.57; 09:54:32.0

10

30

70.70N, 54.67E

3

23.10.61; 13:30:47

4.8

20

70.70N, 54.67E

Надводные взрывы

4

27.10.61; 11:30:26.6

16

1.1

70.70N, 54.67E

5

22.08.62; 12:00:00

6

0

71.00N, 53.50E

Наземный прибрежный взрыв

6

07.09.57; 11:00:01

32

15е

70.69N, 54.80Е

При подготовке к испытаниям был разработан комплекс аппаратуры и методик для измерений действия взрывов и их параметров, проведены модельные исследования при взрывах зарядов тротила в различных водоемах.

При атомных взрывах проводилась фотографическая регистрация поверхностных явлений с двух взаимно перпендикулярных направлений (камеры АФА-33, АКС-1, АКС-2 и др.). C коростные камеры СК-2, АКС и АФАБАФ были установлены в бомболюке самолета ИЛ-28 и регистрировали картину взрыва сверху. СК-2 была предназначена для регистрации огненного шара и его яркостной температуры.

Параметры УВ в воде измерялись механическими измерителями давления МИД-3, поршневыми импульсомерами ИМ-1, ИМ-2, ИМ-3 и пьезоэлектрическими датчиками. Применялись сотни таких устройств, которые спускались на лебедках с кораблей и понтонных плотиков на различную глубину в широком диапазоне расстояний от предполагаемого эпицентра взрыва. Для измерения поверхностных волн применялись резистивные датчики с регистрацией сигналов на тензостанциях. Самописцы давления СД измеряли параметры УВ в воздухе.

Полные дозы гамма излучения за 30-40 часов измерялись фото индикаторами и автоматическими гамма-рентгенометрами в различных точках опытного поля. Были разработаны различные типы приборов для динамических измерений уровней радиации. Диапазон регистрируемых мощностей доз 0.01-100 Р/с. Все рентгенометры были снабжены автоматикой и включались от внешних сигналов.

Запуск аппаратуры в заданные моменты времени перед взрывом и ее выключение после взрыва производился системой автоматического управления испытаниями, разработанной под руководством Г.Л. Шнирмана и П.В. Кевлишвили. Она была предварительно отработана при проведении модельных экспериментов.

Интенсивность излучения подводных взрывов появлялась при подходе газового пузыря к поверхности, повышалась, достигая максимума по мере выхода продуктов в атмосферу, и после подъема облака снижалась до малых значений. В первом опыте султан не экранировал продукты деления, во втором опыте продукты не прорвали султан и интенсивность излучения из водяного столба была низкой. Базисная волна несла в обоих опытах около 10% от полного осколков деления. Концентрация продуктов деления определялась по величине g и b активности в пробах, отобранных по заданной временной программе из базисной волны, выпадающих радиоактивных осадков, а также из воды на различных глубинах и расстояниях от эпицентра. Особенно большие уровни радиоактивного загрязнения были при взрыве на берегу. Параметры ударной волны P m, измеренные на ближайшем к эпицентру установочном расстоянии R =235 м в зависимости от глубины h установки приборов, приведены в таблице 2.

Таблица 2

h, м
10
15
20
25
30
40
50
P м , кг/см 2
310
316
303
301
299
257
306

На каждой из 7 подвесок устанавливалось 4-6 приборов. Среднее давление по всем результатам измерений P м ср =299 ±12 кг/см 2 . По этим данным оценен эквивалентный радиус заряда R 0 = 7.5 ± 0.8 м и тротиловый эквивалент по ударной волне q ув = 2.83 ±0.9 кт. При этом использовались соотношения, не учитывающие градиенты скорости звука в воде [6]. R 0 , м = 5.33 q ув 1/3 кТ, P м = 14700/( R/R 0 ) 1.13 , кг/см 2 . Полный тротиловый эквивалент определен соотношением q сум =(q ув /0.65)=4.35±1.38 kT.

На рис.2 приведены инфразвуковой сигнал, записанный микробарографом на расстоянии 4430 км от наземного прибрежного взрыва 07.09.57 (а) и сейсмограмма, зарегистрированная на расстоянии 120 км в поселке Белушья при подводном взрыве 23.10.61 (б).

Рис.2 а. Запись инфразвукового возмущения от прибрежного взрыва в губе Черная 07.09.57 на расстоянии 4430 км.

 

Рис.2б. Сейсмограмма подводного взрыва 23.10.61 на расстоянии 120 км от эпицентра (поселок Белушья).

 

На рис.3 а,б,с приведены временные зависимости уровней гидроакустических сигналов при подводном атомном взрыве 23.10. 61 на глубине 20 м при глубине дна в эпицентре 47 м. Записи произведены со стороны входа в бухту на расстояниях 18.8 и 56.6 миль, снабженными фильтрами гидрофонами, установленными в 1 м от дна.

 

 

Рис.3 a ,б. Временные зависимости уровней звукового (а) и инфразвукового ( b ) гидроакустических сигналов на расстоянии 18.8 миль при подводном атомном взрыве 23.10.61.

 

На расстоянии 18.8 миль (34,89 км) глубина скального дна с малым слоем ила была 50 м. Время первого вступления для них 12 и 10 с соответствует скоростям 2.9 и 3.48 км/с характерных для поперечных волн. Амплитуды продольных волн ненамного превышали уровень помех (около 62 и 75 дБ). Время прихода к гидрофону Т-фазы со скоростью 1.43 км/с в момент 24.4 с на осциллограммах отмечается в виде слабых возмущений на уровне поперечных волн.

На расстоянии 56.6 миль регистрация проведена в звуковом диапазоне частот рис.3с при глубине дна 60 м. Время вступления первого сигнала 13:36:18, время взрыва (13:30:47). Разность этих времен 331 соответствует скорости 0.27 км/с, что близко к скорости воздушных волн, вызванных поршневым действием поднимающегося султана и рефрагированных в воздушном звуковом канале. Донные и водные волны не попали в развертку.

Рис.3с. Временная зависимость уровня гидроакустического сигнала в звуковой полосе частот на расстоянии 56.6 миль при подводном атомном взрыве 23.10.61.

 

На рис.4 а, б, с, d приведены временные зависимости уровней гидроакустических сигналов при надводном атомном взрыве 27.10.61 на высоте 1.1 м при глубине дна в эпицентре 59 метров. Записи произведены гидрофонами, снабженными фильтрами, установленными в 1 м от дна со стороны входа в бухту на расстояниях 18.8 и 87.6 миль.

Частотные диапазоны гидроакустических измерений 1961 г: инфразвуковой – (5-100) Гц, звуковой – (60-10000) Гц, ультразвуковой-(8-100) кГц. Применявшиеся фильтры имели частоты №9-(5.5-7) Гц, №11-(9-12) Гц, №12-(550-700) Гц.

На расстоянии 87.6 миль регистрация проведена при уровне помех 86 дБ в инфразвуковом диапазоне частот (а) при глубине песчаного дна 45 метров. В момент 11:30:52, отмеченный на регистрограмме через 25.4 секунды после взрыва, наблюдается начало сигнала (скорость 6.32 км/с), отраженного, по-видимому, от границы коры и верхней мантии. После этого время регистрации составляет еще 22 с (или 47.4 с от начала взрыва), что недостаточно для записи Т-фазы, которая должна приходить к гидрофону на 112.2 с при скорости 1.43 км/с.

Рис.4а. Временная зависимость уровня гидроакустического сигнала при надводном атомном взрыве 27.10.61. Запись произведена гидрофоном в инфразвуковом диапазоне на расстоянии 86.6 миль и глубине 44 м .

 

На расстоянии 18.8 миль регистрация проведена на 3 канала, разными фильтрами в том же месте, что и при взрыве 23.10.61г при глубине дна 50м. Уровень шумов при регистрации составил около 87, 80 и 70 дБ соответственно для каналов ( b ), ( c ), ( d ). В момент времени 11:30:51, отмеченный на регистрограммах на каналах b и c отчетливо наблюдается вступление Т-фазы со средней скоростью С=R/t =18.8*1.853/24.4=1.43 км/с. Время прохождения 24.4 с следует из разности времени взрыва 11 :30:26.6 и прихода волны к гидрофону 11:30:51. На канале (d) также можно выявить слабый сигнал в момент 24.4с, соответствующий Т-фазе. Измеренное вблизи гидрофона распределение температуры воды по глубине от 0 до 50 м составило 3.5-4.0 0 С, согласуется со скоростью звука 1.43 м/с.

Рис.4 b ,с, d . Временные зависимости уровней звукового (а), инфразвукового ( b ) и ультразвукового (с) гидроакустических сигналов при надводном атомном взрыве 27.10.61. Записи произведены гидрофоном на входе в бухту с расстояния 18.8 миль на глубине 49 м.

 

При проведении атомных взрывов в губе Черной были также исследованы физические процессы подводных взрывов в мелком водоеме, определен характер действия подводного взрыва на технику и живые организмы, отработаны об­разцы атомного вооружения для ВМФ. После этого флот стал самым эффективным видом Вооруженных Сил. Работа поддержана РФФИ-грант № 02-05 -64134.

 

Литература:

1. Коробейников В.П., Христофоров В.Д. Подводный взрыв. Итоги науки и техники. Гидромеханика, том 9, М., 1976, с.54-119.

2. Адушкин В.В., Бурчик В.Н., Дивнов И.И., Поклад Ю.В., Христофоров Б.Д.. Гидроакустические возмущения при ядерных и химических взрывах. Сб. Динамические процессы во внутренних и внешних оболочках земли (Геофизика сильных возмущений). М. 1995. с. 272-381.

3. Адушкин В.В., Гарнов В.В., Христофоров Б.Д. и др. Ядерные испытания СССР, том 2, с.320. МРФ по атомной энергии.

4. Коул Р. Подводные взрывы. ИЛ. М. 1950 г. с.495.

 

 

ИСПЫТАНИЯ ПЕРВЫХ ОБРАЗЦОВ ЯДЕРНЫХ БОЕПРИПАСОВ
Рис. 1. Формирование инфраструктуры системы ядерных испытаний 1947-1953 гг. [1]
Оглавление   Ударный метаморфизм   Архитектоника Земли   Е.В. Дмитриев   Б. И. Каторгин  

Знаете ли Вы, что низкочастотные электромагнитные волны частотой менее 100 КГц коренным образом отличаются от более высоких частот падением скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тысяч кмилометров в секунду при 100 кГц до примерно 7 тыс км/с при 50 Гц.

НОВОСТИ ФОРУМА

Форум Рыцари теории эфира


Рыцари теории эфира
 10.11.2021 - 12:37: ПЕРСОНАЛИИ - Personalias -> WHO IS WHO - КТО ЕСТЬ КТО - Карим_Хайдаров.
10.11.2021 - 12:36: СОВЕСТЬ - Conscience -> РАСЧЕЛОВЕЧИВАНИЕ ЧЕЛОВЕКА. КОМУ ЭТО НАДО? - Карим_Хайдаров.
10.11.2021 - 12:36: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от д.м.н. Александра Алексеевича Редько - Карим_Хайдаров.
10.11.2021 - 12:35: ЭКОЛОГИЯ - Ecology -> Биологическая безопасность населения - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> Проблема государственного терроризма - Карим_Хайдаров.
10.11.2021 - 12:34: ВОЙНА, ПОЛИТИКА И НАУКА - War, Politics and Science -> ПРАВОСУДИЯ.НЕТ - Карим_Хайдаров.
10.11.2021 - 12:34: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вадима Глогера, США - Карим_Хайдаров.
10.11.2021 - 09:18: НОВЫЕ ТЕХНОЛОГИИ - New Technologies -> Волновая генетика Петра Гаряева, 5G-контроль и управление - Карим_Хайдаров.
10.11.2021 - 09:18: ЭКОЛОГИЯ - Ecology -> ЭКОЛОГИЯ ДЛЯ ВСЕХ - Карим_Хайдаров.
10.11.2021 - 09:16: ЭКОЛОГИЯ - Ecology -> ПРОБЛЕМЫ МЕДИЦИНЫ - Карим_Хайдаров.
10.11.2021 - 09:15: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Екатерины Коваленко - Карим_Хайдаров.
10.11.2021 - 09:13: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ - Upbringing, Inlightening, Education -> Просвещение от Вильгельма Варкентина - Карим_Хайдаров.
Bourabai Research - Технологии XXI века Bourabai Research Institution